sum of 3 cubes (original) (raw)

sum of 3 cubes Semilog plot of some solutions of ''x''³ + ''y''³ + ''z''³ = ''n'' for integer ''x'', ''y'' and ''z'', and ''n'' from 0 to 100 by CMG Lee. No solutions exists for ''n'' denoted by green bands. The purple line denotes the remaining ''n'' under 100 for which a solution is unknown. Data is from http://asahi-net.or.jp/\~KC2H-MSM/mathland/math04/matb0100.htm , http://arxiv.org/pdf/1604.07746 , https://arxiv.org/pdf/1903.04284 and http://phys.org/news/2019-09-sum-cubes-solvedusing-real-life.html . 0 0 0 0 0 0 1 1 −1 −1 −1 −1 0 0 0 0 1 1 −2 −2 −11 −11 −1 −1 −1 609 −1 609 1 1 −2 −2 −2 −2 −2 −2 −14 −14 −15 550 555 555 −15 550 555 555 −1 −1 −1 −1 0 0 0 0 1 1 −2 218 888 517 −2 218 888 517 −8 778 405 442 862 239 −8 778 405 442 862 239 −1 −1 0 0 1 1 −3 −3 −3 −3 −159 380 −159 380 −80 538 738 812 075 974 −80 538 738 812 075 974 2 2 −7 −7 −3 −3 −2 −2 −8 −8 −26 −26 −796 −796 −61 922 712 865 −61 922 712 865 −1 −1 −11 −11 1 1 −21 −21 −2 −2 −4 −4 −4 −4 2 2 −1 −1 0 0 0 0 1 1 −4 −4 −21 −21 −1 −1 −10 −10 1 1 −284 650 292 555 885 −284 650 292 555 885 −435 203 231 −435 203 231 −55 −55 −33 −33 −112 969 −112 969 −18 −18 −11 −11 −2 −2 −41 531 726 −41 531 726 −4 126 −4 126 −4 −4 −7 −7 −1 −1 0 0 1 1 −5 −5 −15 250 −15 250 −3 −3 −3 −3 2 2 −6 −6 0 0 0 0 1 1 1 1 −1 −1 0 0 0 0 1 1 1 1 −2 −2 7 7 2 2 −511 −511 2 2 −1 −1 0 0 1 1 −11 −11 −2 901 096 694 −2 901 096 694 −1 −1 0 0 0 0 1 1 1 1 −283 059 965 −283 059 965 −2 736 111 468 807 040 −2 736 111 468 807 040 2 2 2 2 2 2 0 0 1 1 117 367 117 367 12 602 123 297 335 631 12 602 123 297 335 631 2 2 −5 −5 2 2 3 3 6 6 −23 −23 602 602 23 961 292 454 23 961 292 454 3 3 −7 −7 3 3 −11 −11 1 1 −1 −1 0 0 3 3 0 0 0 0 1 1 1 1 2 2 11 11 2 2 7 7 2 2 66 229 832 190 556 66 229 832 190 556 4 381 159 4 381 159 26 26 −19 −19 69 241 69 241 10 10 −11 −11 3 3 −8 241 191 −8 241 191 −1 972 −1 972 3 3 6 6 3 3 3 3 3 3 −5 −5 10 853 10 853 −1 −1 0 0 3 3 −3 −3 0 0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 10 10 2 2 1 626 1 626 2 2 3 3 3 3 3 3 16 16 15 584 139 827 15 584 139 827 3 3 3 3 3 3 3 3 3 3 2 220 422 932 2 220 422 932 8 866 128 975 287 528 8 866 128 975 287 528 3 3 3 3 3 3 4 4 4 4 134 476 134 476 80 435 758 145 817 515 80 435 758 145 817 515 3 3 8 8 4 4 3 3 7 7 31 31 659 659 60 702 901 317 60 702 901 317 3 3 12 12 3 3 22 22 4 4 5 5 5 5 3 3 4 4 4 4 4 4 4 4 5 5 20 20 4 4 9 9 4 4 283 450 105 697 727 283 450 105 697 727 435 203 083 435 203 083 53 53 35 35 103 532 103 532 17 17 14 14 4 4 41 639 611 41 639 611 4 271 4 271 5 5 6 6 4 4 4 4 4 4 7 7 13 139 13 139 5 5 5 5 4 4 7 7 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 1 103 106 109 1012 1015 1018 −1 −103 −106 −109 −1012 −1015 −1018 n n 0