open Udiff src/hotspot/share/runtime/vframe.hpp (original) (raw)
@@ -28,11 +28,10 @@ #include "code/debugInfo.hpp" #include "code/debugInfoRec.hpp" #include "code/location.hpp" #include "oops/oop.hpp" #include "runtime/frame.hpp" -#include "runtime/frame.inline.hpp" #include "runtime/stackValue.hpp" #include "runtime/stackValueCollection.hpp" #include "utilities/growableArray.hpp"
// vframes are virtual stack frames representing source level activations.
@@ -305,40 +304,30 @@ DEBUG_ONLY(void found_bad_method_frame() const;) public: // Constructor - vframeStreamCommon(JavaThread* thread) : _reg_map(thread, false) { - _thread = thread; - } + vframeStreamCommon(JavaThread* thread); // Accessors Method* method() const { return _method; } int bci() const { return _bci; } - intptr_t* frame_id() const { return _frame.id(); } + intptr_t* frame_id() const; address frame_pc() const { return _frame.pc(); } CodeBlob* cb() const { return _frame.cb(); } CompiledMethod* nm() const { assert( cb() != NULL && cb()->is_compiled(), "usage"); return (CompiledMethod*) cb(); } // Frame type - bool is_interpreted_frame() const { return _frame.is_interpreted_frame(); } - bool is_entry_frame() const { return _frame.is_entry_frame(); } + bool is_interpreted_frame() const; + bool is_entry_frame() const; // Iteration - void next() { - // handle frames with inlining - if (_mode == compiled_mode && fill_in_compiled_inlined_sender()) return;
- // handle general case
- do {
_frame = _frame.sender(&_reg_map);
- } while (!fill_from_frame());
- }
void next(); void security_next();
bool at_end() const { return _mode == at_end_mode; }
// Implements security traversal. Skips depth no. of frame including
@@ -351,184 +340,12 @@ }; class vframeStream : public vframeStreamCommon { public: // Constructors - vframeStream(JavaThread* thread, bool stop_at_java_call_stub = false) - : vframeStreamCommon(thread) { - _stop_at_java_call_stub = stop_at_java_call_stub;
- if (!thread->has_last_Java_frame()) {
_mode = at_end_mode;
return;
- }
- _frame = _thread->last_frame();
- while (!fill_from_frame()) {
_frame = _frame.sender(&_reg_map);
- }
- }
vframeStream(JavaThread* thread, bool stop_at_java_call_stub = false);
// top_frame may not be at safepoint, start with sender vframeStream(JavaThread* thread, frame top_frame, bool stop_at_java_call_stub = false);
};
-inline bool vframeStreamCommon::fill_in_compiled_inlined_sender() { - if (_sender_decode_offset == DebugInformationRecorder::serialized_null) { - return false; - } - fill_from_compiled_frame(_sender_decode_offset); - return true; -}
- -inline void vframeStreamCommon::fill_from_compiled_frame(int decode_offset) {
- _mode = compiled_mode;
- // Range check to detect ridiculous offsets.
- if (decode_offset == DebugInformationRecorder::serialized_null ||
decode_offset < 0 ||
decode_offset >= nm()->scopes_data_size()) {
- // 6379830 AsyncGetCallTrace sometimes feeds us wild frames.
- // If we read nmethod::scopes_data at serialized_null (== 0)
- // or if read some at other invalid offset, invalid values will be decoded.
- // Based on these values, invalid heap locations could be referenced
- // that could lead to crashes in product mode.
- // Therefore, do not use the decode offset if invalid, but fill the frame
- // as it were a native compiled frame (no Java-level assumptions).
-#ifdef ASSERT - if (WizardMode) { - ttyLocker ttyl; - tty->print_cr("Error in fill_from_frame: pc_desc for " - INTPTR_FORMAT " not found or invalid at %d", - p2i(_frame.pc()), decode_offset); - nm()->print(); - nm()->method()->print_codes(); - nm()->print_code(); - nm()->print_pcs(); - } - found_bad_method_frame(); -#endif - // Provide a cheap fallback in product mode. (See comment above.) - fill_from_compiled_native_frame(); - return; - }
- // Decode first part of scopeDesc
- DebugInfoReadStream buffer(nm(), decode_offset);
- _sender_decode_offset = buffer.read_int();
- _method = buffer.read_method();
- _bci = buffer.read_bci();
- assert(_method->is_method(), "checking type of decoded method"); -}
- -// The native frames are handled specially. We do not rely on ScopeDesc info -// since the pc might not be exact due to the _last_native_pc trick. -inline void vframeStreamCommon::fill_from_compiled_native_frame() {
- _mode = compiled_mode;
- _sender_decode_offset = DebugInformationRecorder::serialized_null;
- _method = nm()->method();
- _bci = 0; -}
- -inline bool vframeStreamCommon::fill_from_frame() {
- // Interpreted frame
- if (_frame.is_interpreted_frame()) {
- fill_from_interpreter_frame();
- return true;
- }
- // Compiled frame
- if (cb() != NULL && cb()->is_compiled()) {
- if (nm()->is_native_method()) {
// Do not rely on scopeDesc since the pc might be unprecise due to the _last_native_pc trick.
fill_from_compiled_native_frame();
- } else {
PcDesc* pc_desc = nm()->pc_desc_at(_frame.pc());
int decode_offset;
if (pc_desc == NULL) {
// Should not happen, but let fill_from_compiled_frame handle it.
// If we are trying to walk the stack of a thread that is not
// at a safepoint (like AsyncGetCallTrace would do) then this is an
// acceptable result. [ This is assuming that safe_for_sender
// is so bullet proof that we can trust the frames it produced. ]
//
// So if we see that the thread is not safepoint safe
// then simply produce the method and a bci of zero
// and skip the possibility of decoding any inlining that
// may be present. That is far better than simply stopping (or
// asserting. If however the thread is safepoint safe this
// is the sign of a compiler bug and we'll let
// fill_from_compiled_frame handle it.
JavaThreadState state = _thread->thread_state();
// in_Java should be good enough to test safepoint safety
// if state were say in_Java_trans then we'd expect that
// the pc would have already been slightly adjusted to
// one that would produce a pcDesc since the trans state
// would be one that might in fact anticipate a safepoint
if (state == _thread_in_Java ) {
// This will get a method a zero bci and no inlining.
// Might be nice to have a unique bci to signify this
// particular case but for now zero will do.
fill_from_compiled_native_frame();
// There is something to be said for setting the mode to
// at_end_mode to prevent trying to walk further up the
// stack. There is evidence that if we walk any further
// that we could produce a bad stack chain. However until
// we see evidence that allowing this causes us to find
// frames bad enough to cause segv's or assertion failures
// we don't do it as while we may get a bad call chain the
// probability is much higher (several magnitudes) that we
// get good data.
return true;
}
decode_offset = DebugInformationRecorder::serialized_null;
} else {
decode_offset = pc_desc->scope_decode_offset();
}
fill_from_compiled_frame(decode_offset);
- }
- return true;
- }
- // End of stack?
- if (_frame.is_first_frame() || (_stop_at_java_call_stub && _frame.is_entry_frame())) {
- _mode = at_end_mode;
- return true;
- }
- return false; -}
- -inline void vframeStreamCommon::fill_from_interpreter_frame() {
- Method* method = _frame.interpreter_frame_method();
- address bcp = _frame.interpreter_frame_bcp();
- int bci = method->validate_bci_from_bcp(bcp);
- // 6379830 AsyncGetCallTrace sometimes feeds us wild frames.
- // AsyncGetCallTrace interrupts the VM asynchronously. As a result
- // it is possible to access an interpreter frame for which
- // no Java-level information is yet available (e.g., becasue
- // the frame was being created when the VM interrupted it).
- // In this scenario, pretend that the interpreter is at the point
- // of entering the method.
- if (bci < 0) {
- DEBUG_ONLY(found_bad_method_frame();)
- bci = 0;
- }
- _mode = interpreted_mode;
- _method = method;
- _bci = bci; -}
- #endif // SHARE_VM_RUNTIME_VFRAME_HPP