ClusterGVis: One-Step to Cluster and Visualize Gene Expression Data (original) (raw)
Streamlining the clustering and visualization of time-series gene expression data from RNA-Seq experiments, this tool supports fuzzy c-means and k-means clustering algorithms. It is compatible with outputs from widely-used packages such as 'Seurat', 'Monocle', and 'WGCNA', enabling seamless downstream visualization and analysis. See Lokesh Kumar and Matthias E Futschik (2007) <doi:10.6026/97320630002005> for more details.
Version: | 0.1.2 |
---|---|
Depends: | R (≥ 2.10) |
Imports: | Biobase, circlize, clusterProfiler, colorRamps, ComplexHeatmap, dplyr, e1071, factoextra, ggplot2, grDevices, grid, magrittr, Matrix, methods, Mfuzz, purrr, reshape2, scales, SingleCellExperiment, stats, SummarizedExperiment, TCseq, tibble |
Suggests: | igraph, monocle, pheatmap, Seurat, WGCNA |
Published: | 2025-02-14 |
DOI: | 10.32614/CRAN.package.ClusterGVis |
Author: | Jun Zhang |
Maintainer: | Jun Zhang <3219030654 at stu.cpu.edu.cn> |
BugReports: | https://github.com/junjunlab/ClusterGVis/issues |
License: | MIT + file |
NeedsCompilation: | no |
Citation: | ClusterGVis citation info |
Materials: | README |
CRAN checks: | ClusterGVis results |
Documentation:
Downloads:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=ClusterGVisto link to this page.