aIc: Testing for Compositional Pathologies in Datasets (original) (raw)
A set of tests for compositional pathologies. Tests for coherence of correlations with aIc.coherent() as suggested by (Erb et al. (2020) <doi:10.1016/j.acags.2020.100026>), compositional dominance of distance with aIc.dominant(), compositional perturbation invariance with aIc.perturb() as suggested by (Aitchison (1992) <doi:10.1007/BF00891269>) and singularity of the covariation matrix with aIc.singular(). Currently tests five data transformations: prop, clr, TMM, TMMwsp, and RLE from the R packages 'ALDEx2', 'edgeR' and 'DESeq2' (Fernandes et al (2014) <doi:10.1186/2049-2618-2-15>, Anders et al. (2013)<doi:10.1038/nprot.2013.099>).
Version: | 1.0 |
---|---|
Depends: | R (≥ 3.5.0) |
Imports: | matrixcalc, zCompositions, shiny, edgeR, ALDEx2, vegan |
Suggests: | BiocStyle, knitr, rmarkdown |
Published: | 2022-10-04 |
DOI: | 10.32614/CRAN.package.aIc |
Author: | Greg Gloor |
Maintainer: | Greg Gloor |
BugReports: | https://github.com/ggloor/aIc/issues |
License: | GPL (≥ 3) |
URL: | https://github.com/ggloor/aIc |
NeedsCompilation: | no |
In views: | CompositionalData |
CRAN checks: | aIc results |
Documentation:
Downloads:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=aIcto link to this page.