flexmix: Flexible Mixture Modeling (original) (raw)

A general framework for finite mixtures of regression models using the EM algorithm is implemented. The E-step and all data handling are provided, while the M-step can be supplied by the user to easily define new models. Existing drivers implement mixtures of standard linear models, generalized linear models and model-based clustering.

Version:

2.3-19

Depends:

R (≥ 2.15.0), lattice

Imports:

graphics, grid, grDevices, methods, modeltools (≥ 0.2-16), nnet, stats, stats4, utils

Suggests:

actuar, codetools, diptest, Ecdat, ellipse, gclus, glmnet, lme4 (≥ 1.1), MASS, mgcv (≥ 1.8-0), mlbench, multcomp, mvtnorm, SuppDists, survival

Published:

2023-03-16

DOI:

10.32614/CRAN.package.flexmix

Author:

Bettina Gruen ORCID iD [aut, cre], Friedrich Leisch ORCID iD [aut], Deepayan Sarkar ORCID iD [ctb], Frederic Mortier [ctb], Nicolas Picard ORCID iD [ctb]

Maintainer:

Bettina Gruen <Bettina.Gruen at R-project.org>

License:

GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]

NeedsCompilation:

no

Citation:

flexmix citation info

Materials:

NEWS

In views:

Cluster, Environmetrics, Psychometrics

CRAN checks:

flexmix results