doi:10.1038/s41591-022-01789-0>.">

glmmSeq: General Linear Mixed Models for Gene-Level Differential Expression (original) (raw)

Using mixed effects models to analyse longitudinal gene expression can highlight differences between sample groups over time. The most widely used differential gene expression tools are unable to fit linear mixed effect models, and are less optimal for analysing longitudinal data. This package provides negative binomial and Gaussian mixed effects models to fit gene expression and other biological data across repeated samples. This is particularly useful for investigating changes in RNA-Sequencing gene expression between groups of individuals over time, as described in: Rivellese, F., Surace, A. E., Goldmann, K., Sciacca, E., Cubuk, C., Giorli, G., ... Lewis, M. J., & Pitzalis, C. (2022) Nature medicine <doi:10.1038/s41591-022-01789-0>.

Version: 0.5.5
Depends: R (≥ 3.6.0)
Imports: MASS, car, stats, ggplot2, ggpubr, glmmTMB, graphics, lme4, lmerTest, methods, plotly, qvalue, pbapply, pbmcapply
Suggests: knitr, rmarkdown, kableExtra, DESeq2, edgeR, emmeans
Published: 2022-10-08
DOI: 10.32614/CRAN.package.glmmSeq
Author: Myles Lewis ORCID iD [aut, cre], Katriona Goldmann ORCID iD [aut], Elisabetta SciaccaORCID iD [aut], Cankut Cubuk ORCID iD [ctb], Anna Surace ORCID iD [ctb]
Maintainer: Myles Lewis <myles.lewis at qmul.ac.uk>
BugReports: https://github.com/myles-lewis/glmmSeq/issues
License: MIT + file
URL: https://myles-lewis.github.io/glmmSeq/,https://github.com/myles-lewis/glmmSeq
NeedsCompilation: no
Language: en-gb
Materials: README NEWS
In views: Omics
CRAN checks: glmmSeq results

Documentation:

Downloads:

Reverse dependencies:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=glmmSeqto link to this page.