glmpca: Dimension Reduction of Non-Normally Distributed Data (original) (raw)
Implements a generalized version of principal components analysis (GLM-PCA) for dimension reduction of non-normally distributed data such as counts or binary matrices. Townes FW, Hicks SC, Aryee MJ, Irizarry RA (2019) <doi:10.1186/s13059-019-1861-6>. Townes FW (2019) <doi:10.48550/arXiv.1907.02647>.
Version: | 0.2.0 |
---|---|
Depends: | R (≥ 3.5) |
Imports: | MASS, methods, stats, utils |
Suggests: | covr, ggplot2, knitr, logisticPCA, markdown, Matrix, testthat |
Published: | 2020-07-18 |
DOI: | 10.32614/CRAN.package.glmpca |
Author: | F. William Townes [aut, cre, cph], Kelly Street [aut], Jake Yeung [ctb] |
Maintainer: | F. William Townes <will.townes at gmail.com> |
BugReports: | https://github.com/willtownes/glmpca/issues |
License: | LGPL (≥ 3) | file |
URL: | https://github.com/willtownes/glmpca |
NeedsCompilation: | no |
Language: | en-US |
Materials: | README NEWS |
CRAN checks: | glmpca results |
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=glmpcato link to this page.