doi:10.1186/s13059-019-1861-6>. Townes FW (2019) <doi:10.48550/arXiv.1907.02647>.">

glmpca: Dimension Reduction of Non-Normally Distributed Data (original) (raw)

Implements a generalized version of principal components analysis (GLM-PCA) for dimension reduction of non-normally distributed data such as counts or binary matrices. Townes FW, Hicks SC, Aryee MJ, Irizarry RA (2019) <doi:10.1186/s13059-019-1861-6>. Townes FW (2019) <doi:10.48550/arXiv.1907.02647>.

Version: 0.2.0
Depends: R (≥ 3.5)
Imports: MASS, methods, stats, utils
Suggests: covr, ggplot2, knitr, logisticPCA, markdown, Matrix, testthat
Published: 2020-07-18
DOI: 10.32614/CRAN.package.glmpca
Author: F. William Townes [aut, cre, cph], Kelly Street [aut], Jake Yeung [ctb]
Maintainer: F. William Townes <will.townes at gmail.com>
BugReports: https://github.com/willtownes/glmpca/issues
License: LGPL (≥ 3) | file
URL: https://github.com/willtownes/glmpca
NeedsCompilation: no
Language: en-US
Materials: README NEWS
CRAN checks: glmpca results

Documentation:

Downloads:

Reverse dependencies:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=glmpcato link to this page.