hicream: HIC diffeREntial Analysis Method (original) (raw)

Perform Hi-C data differential analysis based on pixel-level differential analysis and a post hoc inference strategy to quantify signal in clusters of pixels. Clusters of pixels are obtained through a connectivity-constrained two-dimensional hierarchical clustering.

Version:

0.0.2

Depends:

R (≥ 4.0.0), reticulate

Imports:

adjclust, auk, BiocGenerics, csaw, diffHic, dplyr, edgeR, GenomeInfoDb, GenomicRanges, InteractionSet, limma, Matrix, methods, reshape2, rlang, S4Vectors, stats, SummarizedExperiment, utils, viridis

Suggests:

knitr, rmarkdown

Published:

2025-11-19

DOI:

10.32614/CRAN.package.hicream

Author:

Elise Jorge [aut, cre], Sylvain Foissac ORCID iD [aut], Toby Hocking ORCID iD [aut], Pierre Neuvial ORCID iD [aut], Nathalie VialaneixORCID iD [aut], Gilles Blanchard [ctb], Guillermo Durand ORCID iD [ctb], Nicolas Enjalbert-Courrech [ctb], Etienne Roquain [ctb]

Maintainer:

Elise Jorge <elise.jorge at inrae.fr>

BugReports:

https://forge.inrae.fr/scales/hicream/-/issues

License:

GPL (≥ 3)

URL:

https://forge.inrae.fr/scales/hicream

NeedsCompilation:

no

SystemRequirements:

Python (>= 3.9)

Materials:

README, NEWS

CRAN checks:

hicream results