Als geodätische Hauptaufgaben versteht man in der Geodäsie zwei wichtige Arten der Koordinatentransformation, nämlich jene von rechtwinkligen in Polarkoordinaten und umgekehrt. (de)
The study of geodesics on an ellipsoid arose in connection with geodesy specifically with the solution of triangulation networks. The figure of the Earth is well approximated by an oblate ellipsoid, a slightly flattened sphere. A geodesic is the shortest path between two points on a curved surface, analogous to a straight line on a plane surface. The solution of a triangulation network on an ellipsoid is therefore a set of exercises in spheroidal trigonometry. If the Earth is treated as a sphere, the geodesics are great circles (all of which are closed) and the problems reduce to ones in spherical trigonometry. However, showed that the effect of the rotation of the Earth results in its resembling a slightly oblate ellipsoid: in this case, the equator and the meridians are the only simple closed geodesics. Furthermore, the shortest path between two points on the equator does not necessarily run along the equator. Finally, if the ellipsoid is further perturbed to become a triaxial ellipsoid (with three distinct semi-axes), only three geodesics are closed. (en)
Изучение геодезических на эллипсоиде возникло в связи с задачами геодезии, а именно с обработкой сетей триангуляции.Фигура Земли хорошо описывается эллипсоидом вращения, слегка сплющенной сферой. Геодезическая (геодезическая линия) это кратчайший путь между двумя точками на кривой поверхности, на плоскости он обращается в прямую. Таким образом, обработка сети триангуляции на эллипсоиде использует ряд задач сфероидической тригонометрии. Если рассматривать Землю как сферу, то геодезические являются большими кругами (все из которых замкнуты) и задача сводится к сферической тригонометрии. Однако, ) показал, что эффект вращения Земли приводит к сжатию, соответственно фигура обращается в сплюснутый эллипсоид вращения, в этом случае только экватор и меридианы являются простыми замкнутыми геодезическими. Кроме того, кратчайший путь между двумя точками на экваторе необязательно проходит вдоль экватора. Наконец, если эллипсоид преобразовать в трехосный (с тремя различными полуосями), то только три геодезических линий будут замкнутыми. (ru)
Als geodätische Hauptaufgaben versteht man in der Geodäsie zwei wichtige Arten der Koordinatentransformation, nämlich jene von rechtwinkligen in Polarkoordinaten und umgekehrt. (de)
The study of geodesics on an ellipsoid arose in connection with geodesy specifically with the solution of triangulation networks. The figure of the Earth is well approximated by an oblate ellipsoid, a slightly flattened sphere. A geodesic is the shortest path between two points on a curved surface, analogous to a straight line on a plane surface. The solution of a triangulation network on an ellipsoid is therefore a set of exercises in spheroidal trigonometry. (en)
Изучение геодезических на эллипсоиде возникло в связи с задачами геодезии, а именно с обработкой сетей триангуляции.Фигура Земли хорошо описывается эллипсоидом вращения, слегка сплющенной сферой. Геодезическая (геодезическая линия) это кратчайший путь между двумя точками на кривой поверхности, на плоскости он обращается в прямую. Таким образом, обработка сети триангуляции на эллипсоиде использует ряд задач сфероидической тригонометрии. (ru)