Automated Pain Recognition (original) (raw)

About DBpedia

Automated Pain Recognition (APR) is a method for objectively measuring pain and at the same time represents an interdisciplinary research area that comprises elements of medicine, psychology, psychobiology, and computer science. The focus is on computer-aided objective recognition of pain, implemented on the basis of machine learning. However, the clinical implementation of this approach is a controversial topic in the field of pain research. Critics of automated pain recognition argue that pain diagnosis can only be performed subjectively by humans.

thumbnail

Property Value
dbo:abstract Die Automatisierte Schmerzerkennung (AS) ist eine Methode zur objektiven Messung von Schmerz und stellt zugleich ein interdisziplinäres Forschungsfeld dar, das Teile der Medizin, Psychologie, Psychobiologie und Informatik umfasst. Der Fokus liegt in der computergestützten objektiven Erkennung von Schmerzen, welche auf der Basis maschinellen Lernens realisiert wird. Die automatisierte Schmerzerkennung ermöglicht eine valide und reliable Detektion bzw. Monitoring des Schmerzes bei Menschen ohne verbale Kommunikationsmöglichkeiten. Die dabei zugrunde liegenden maschinellen Lernverfahren werden im Vorfeld anhand menschlicher uni- oder multimodaler Körpersignale trainiert und validiert. Signale zur Detektion des Schmerzes können mimischen, gestischen, (psycho-)physiologischen und paralinguistischen Charakter haben. Bisher steht die Erkennung der Schmerzintensität im Vordergrund, visionär wird aber auch die Erkennung der Qualität, der Lokalisation und des zeitlichen Verlaufs des Schmerzes angestrebt. Die klinische Implementierung wird im Bereich der Schmerzforschung jedoch kontrovers diskutiert. Kritiker der automatisierten Schmerzerkennung vertreten den Standpunkt, dass eine Schmerzdiagnostik nur subjektiv durch den Menschen erfolgen kann. (de) Automated Pain Recognition (APR) is a method for objectively measuring pain and at the same time represents an interdisciplinary research area that comprises elements of medicine, psychology, psychobiology, and computer science. The focus is on computer-aided objective recognition of pain, implemented on the basis of machine learning. Automated pain recognition allows for the valid, reliable detection and monitoring of pain in people who are unable to communicate verbally. The underlying machine learning processes are trained and validated in advance by means of unimodal or multimodal body signals. Signals used to detect pain may include facial expressions or gestures and may also be of a (psycho-)physiological or paralinguistic nature. To date, the focus has been on identifying pain intensity, but visionary efforts are also being made to recognize the quality, site, and temporal course of pain. However, the clinical implementation of this approach is a controversial topic in the field of pain research. Critics of automated pain recognition argue that pain diagnosis can only be performed subjectively by humans. (en)
dbo:thumbnail wiki-commons:Special:FilePath/Simplified_automated_pain_recognition_process.png?width=300
dbo:wikiPageExternalLink https://www.uniklinik-ulm.de/psychosomatische-medizin-und-psychotherapie/forschung/sektion-medizinische-psychologie/forschungsbereiche/schmerz-emotionen.html
dbo:wikiPageID 59891758 (xsd:integer)
dbo:wikiPageLength 12935 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1123099348 (xsd:integer)
dbo:wikiPageWikiLink dbr:Psychology dbr:Electrocardiography dbr:Electrode dbr:Electrodermal_activity dbr:Electromyography dbr:Non-invasive dbr:Psychomotor_agitation dbc:Classification_algorithms dbr:Quasi-experiment dbr:Electroencephalogram dbr:Gesture dbr:Physiological dbr:Machine_learning dbr:Computer_science dbr:Feature_(machine_learning) dbr:Pain dbc:Pain_management dbr:Heart_rate dbr:Affective_computing dbc:Pain dbr:Database dbr:Pain_Assessment_in_Advanced_Dementia_(PAINAD) dbr:Body_temperature dbr:Classifier_(machine_learning) dbr:Random_forest dbr:Artificial_neural_network dbr:Accuracy_and_precision dbr:K-nearest_neighbors_algorithm dbr:Support-vector_machine dbr:Muscle_tone dbr:Immunological dbr:Autonomic_nervous_system dbc:Pattern_recognition dbr:Psychophysiological dbr:Endocrinological dbr:Reflex dbr:Medicine dbr:Sympathetic_nervous_system dbr:Facial_expression dbr:Paralinguistic dbr:Parasympathetic_nervous_system dbr:Psychobiology dbr:Respiration_of_human dbr:Information_Fusion dbr:Bipotential dbr:File:Simplified_automated_pain_recognition_process.png
dbp:wikiPageUsesTemplate dbt:Citation_needed dbt:Cn
dct:subject dbc:Classification_algorithms dbc:Pain_management dbc:Pain dbc:Pattern_recognition
rdfs:comment Automated Pain Recognition (APR) is a method for objectively measuring pain and at the same time represents an interdisciplinary research area that comprises elements of medicine, psychology, psychobiology, and computer science. The focus is on computer-aided objective recognition of pain, implemented on the basis of machine learning. However, the clinical implementation of this approach is a controversial topic in the field of pain research. Critics of automated pain recognition argue that pain diagnosis can only be performed subjectively by humans. (en) Die Automatisierte Schmerzerkennung (AS) ist eine Methode zur objektiven Messung von Schmerz und stellt zugleich ein interdisziplinäres Forschungsfeld dar, das Teile der Medizin, Psychologie, Psychobiologie und Informatik umfasst. Der Fokus liegt in der computergestützten objektiven Erkennung von Schmerzen, welche auf der Basis maschinellen Lernens realisiert wird. (de)
rdfs:label Automatisierte Schmerzerkennung (de) Automated Pain Recognition (en)
owl:sameAs wikidata:Automated Pain Recognition dbpedia-de:Automated Pain Recognition https://global.dbpedia.org/id/9RLDM
prov:wasDerivedFrom wikipedia-en:Automated_Pain_Recognition?oldid=1123099348&ns=0
foaf:depiction wiki-commons:Special:FilePath/Simplified_automated_pain_recognition_process.png
foaf:isPrimaryTopicOf wikipedia-en:Automated_Pain_Recognition
is foaf:primaryTopic of wikipedia-en:Automated_Pain_Recognition