El model de la pila de sorra, també conegut com a model Bak–Tang–Wiesenfeld (BTW), és un autòmat cel·lular dissenyat per analitzar i explicar el comportament d'autoorganització a través de la teoria de grafs i la teoria d'autòmats cel·lulars, utilitzant eines algebraiques. Va ser el primer exemple descobert d'un sistema dinàmic que mostra autoorganització crítica, és a dir, que té punts crítics com un atractor en la seva evolució temporal. Fou introduït l'any 1987 per Per Bak, Chao Tang i Kurt Wiesenfeld. En la seva formulació original, cada cel·la d'una graella finita té un valor associat que correspon a l'alçada de la pila. Si se sobrepassa un llindar d'alçada màxima en una cel·la, aquesta passa una unitat a cadascuna de les cel·les adjacents. (ca)
The Abelian sandpile model (ASM) is the more popular name of the original Bak–Tang–Wiesenfeld model (BTW). BTW model was the first discovered example of a dynamical system displaying self-organized criticality. It was introduced by Per Bak, Chao Tang and Kurt Wiesenfeld in a 1987 paper. Three years later Deepak Dhar discovered that the BTW sandpile model indeed follows the abelian dynamics and therefore referred to this model as the Abelian sandpile model. The model is a cellular automaton. In its original formulation, each site on a finite grid has an associated value that corresponds to the slope of the pile. This slope builds up as "grains of sand" (or "chips") are randomly placed onto the pile, until the slope exceeds a specific threshold value at which time that site collapses transferring sand into the adjacent sites, increasing their slope. Bak, Tang, and Wiesenfeld considered process of successive random placement of sand grains on the grid; each such placement of sand at a particular site may have no effect, or it may cause a cascading reaction that will affect many sites. Dhar has shown that the final stable sandpile configuration after the avalanche is terminated, is independent of the precise sequence of topplings that is followed during the avalanche. As a direct consequence of this fact, it is shown that if two sand grains are added to the stable configuration in two different orders, e.g., first at site A and then at site B, and first at B and then at A, the final stable configuration of sand grains turns out to be exactly the same. When a sand grain is added to a stable sandpile configuration, it results in an avalanche which finally stops leading to another stable configuration. Dhar proposed that the addition of a sand grain can be looked upon as an operator, when it acts on one stable configuration, it produces another stable configuration. Dhar showed that all such addition operators form an abelian group, hence the name Abelian sandpile model.The model has since been studied on the infinite lattice, on other (non-square) lattices, and on arbitrary graphs (including directed multigraphs). It is closely related to the dollar game, a variant of the chip-firing game introduced by Biggs. (en)
El modelo de pilas de arena es un modelo matemático diseñado para analizar y explicar el comportamiento de la autoorganización crítica a través de la teoría de grafos y la teoría de autómatas celulares utilizando herramientas algebraicas. Considere una pila de arena o un reloj de arena apenas girado, si la pendiente es muy alta, la pila está lejos de encontrarse en equilibrio y colapsará hasta que la pendiente promedio llegue a un valor crítico en el cual el sistema es apenas estable bajo perturbaciones pequeñas. Desde el planteamiento del modelo por Bak, Tang y Wiesenfeld como ejemplo de autoordenamiento crítico en un sistema dinámico el modelo ha sido estudiado en rejillas (grids) en , en grafos no k-regulares y hasta en grafos arbitrarios. (es)
Модель песчаной кучи (англ. sandpile model) — классическая модель теории самоорганизованной критичности, связанная со многими областями математики. (ru)
Модель песчаной кучи (англ. sandpile model) — классическая модель теории самоорганизованной критичности, связанная со многими областями математики. (ru)
El model de la pila de sorra, també conegut com a model Bak–Tang–Wiesenfeld (BTW), és un autòmat cel·lular dissenyat per analitzar i explicar el comportament d'autoorganització a través de la teoria de grafs i la teoria d'autòmats cel·lulars, utilitzant eines algebraiques. Va ser el primer exemple descobert d'un sistema dinàmic que mostra autoorganització crítica, és a dir, que té punts crítics com un atractor en la seva evolució temporal. Fou introduït l'any 1987 per Per Bak, Chao Tang i Kurt Wiesenfeld. (ca)
The Abelian sandpile model (ASM) is the more popular name of the original Bak–Tang–Wiesenfeld model (BTW). BTW model was the first discovered example of a dynamical system displaying self-organized criticality. It was introduced by Per Bak, Chao Tang and Kurt Wiesenfeld in a 1987 paper. Three years later Deepak Dhar discovered that the BTW sandpile model indeed follows the abelian dynamics and therefore referred to this model as the Abelian sandpile model. (en)
El modelo de pilas de arena es un modelo matemático diseñado para analizar y explicar el comportamiento de la autoorganización crítica a través de la teoría de grafos y la teoría de autómatas celulares utilizando herramientas algebraicas. Considere una pila de arena o un reloj de arena apenas girado, si la pendiente es muy alta, la pila está lejos de encontrarse en equilibrio y colapsará hasta que la pendiente promedio llegue a un valor crítico en el cual el sistema es apenas estable bajo perturbaciones pequeñas. (es)