تتسم رياضيات النسبية العامة بالتعقيد. إذ أن قوانين الحركة الكلاسيكية تفترض أن كلًا من أبعاد الأجسام ومعدل مرور الأزمنة يظل ثابتًا أثناء تسارع الجسم، مما يعني أن معظم مسائل الميكانيكا الكلاسيكية يمكن حلها باستخدام الجبر فقط. أما نظرية النسبية فهي تنص على أن كلًا من أبعاد الأجسام ومعدل مرور الأزمنة يتغير بدرجة ملحوظة كلما اقتربت سرعة الجسم الخاضع للدراسة من سرعة الضوء. ونتيجة لذلك تقتضي النسبية العامة استخدام بعض المفاهيم الرياضية المتقدمة مثل المتجهات، والموترات، والموترات الزائفة، والإحداثيات المنحنية. (ar)
The mathematics of general relativity is complex. In Newton's theories of motion, an object's length and the rate at which time passes remain constant while the object accelerates, meaning that many problems in Newtonian mechanics may be solved by algebra alone. In relativity, however, an object's length and the rate at which time passes both change appreciably as the object's speed approaches the speed of light, meaning that more variables and more complicated mathematics are required to calculate the object's motion. As a result, relativity requires the use of concepts such as vectors, tensors, pseudotensors and curvilinear coordinates. For an introduction based on the example of particles following circular orbits about a large mass, nonrelativistic and relativistic treatments are given in, respectively, Newtonian motivations for general relativity and Theoretical motivation for general relativity. (en)
일반 상대성 이론의 기반이 되는 수학은, 전자기학이나 뉴턴역학에 필요한 수학에 비해 어렵다. 뉴턴의 운동 이론에서는, 물체의 길이 및 시간(보다 정확하게는, 시간이 흐르는 속도)은 물체가 가속되는 동안에도, 일정하게 유지된다. 이는 뉴턴 역학에서의 많은 문제들이 대수(algebra) 만을 사용하여 풀 수 있음을 의미한다. 하지만, 상대론에서는, 물체의 속도가 빛의 속도에 가까워 질수록, 물체의 길이와 시간은 모두 상당히 변하게 되며, 따라서, 물체의 움직임을 계산하기 위해서는, 더 많은 변수와 더 복잡한 수학이 필요하다. 그 결과로서, 상대론에서는 벡터, 텐서, 슈도 텐서, 및 곡선 좌표와 같은 개념들을 사용하는 것이 필요하게 된다. (ko)
تتسم رياضيات النسبية العامة بالتعقيد. إذ أن قوانين الحركة الكلاسيكية تفترض أن كلًا من أبعاد الأجسام ومعدل مرور الأزمنة يظل ثابتًا أثناء تسارع الجسم، مما يعني أن معظم مسائل الميكانيكا الكلاسيكية يمكن حلها باستخدام الجبر فقط. أما نظرية النسبية فهي تنص على أن كلًا من أبعاد الأجسام ومعدل مرور الأزمنة يتغير بدرجة ملحوظة كلما اقتربت سرعة الجسم الخاضع للدراسة من سرعة الضوء. ونتيجة لذلك تقتضي النسبية العامة استخدام بعض المفاهيم الرياضية المتقدمة مثل المتجهات، والموترات، والموترات الزائفة، والإحداثيات المنحنية. (ar)
일반 상대성 이론의 기반이 되는 수학은, 전자기학이나 뉴턴역학에 필요한 수학에 비해 어렵다. 뉴턴의 운동 이론에서는, 물체의 길이 및 시간(보다 정확하게는, 시간이 흐르는 속도)은 물체가 가속되는 동안에도, 일정하게 유지된다. 이는 뉴턴 역학에서의 많은 문제들이 대수(algebra) 만을 사용하여 풀 수 있음을 의미한다. 하지만, 상대론에서는, 물체의 속도가 빛의 속도에 가까워 질수록, 물체의 길이와 시간은 모두 상당히 변하게 되며, 따라서, 물체의 움직임을 계산하기 위해서는, 더 많은 변수와 더 복잡한 수학이 필요하다. 그 결과로서, 상대론에서는 벡터, 텐서, 슈도 텐서, 및 곡선 좌표와 같은 개념들을 사용하는 것이 필요하게 된다. (ko)
The mathematics of general relativity is complex. In Newton's theories of motion, an object's length and the rate at which time passes remain constant while the object accelerates, meaning that many problems in Newtonian mechanics may be solved by algebra alone. In relativity, however, an object's length and the rate at which time passes both change appreciably as the object's speed approaches the speed of light, meaning that more variables and more complicated mathematics are required to calculate the object's motion. As a result, relativity requires the use of concepts such as vectors, tensors, pseudotensors and curvilinear coordinates. (en)