dbo:abstract
- Chiral analysis refers to the quantification of component enantiomers of racemic drug substances or pharmaceutical compounds. Other synonyms commonly used include enantiomer analysis, enantiomeric analysis, and enantioselective analysis. Chiral analysis includes all analytical procedures focused on the characterization of the properties of chiral drugs. Chiral analysis is usually performed with chiral separation methods where the enantiomers are separated on an analytical scale and simultaneously assayed for each enantiomer. Many compounds of biological and pharmacological interest are chiral. Pharmacodynamic, pharmacokinetic, and toxicological properties of the enantiomers of racemic chiral drugs has expanded significantly and become a key issue for both the pharmaceutical industry and regulatory agencies. Typically one of the enantiomers is more active pharmacologically (eutomer). In several cases, unwanted side effects or even toxic effects may occur with the inactive enantiomer (distomer). Even if the side effects are not that serious, the inactive enantiomer has to be metabolized, this puts an unnecessary burden on the already stressed out system of the patient. Large differences in activity between enantiomers reveal the need to accurate assessment of enantiomeric purity of pharmaceutical, agrochemicals, and other chemical entities like fragrances and flavors become very important. Moreover, the moment a racemic therapeutic is placed in a biological system, a chiral environment, it is no more 50:50 due enantioselective absorption, distribution, metabolism, and elimination (ADME) process. Hence to track the individual enantiomeric profile there is a need for chiral analysis tool. Chiral technology is an active subject matter related to asymmetric synthesis and enantioselective analysis, particularly in the area of chiral chromatography. As a consequence of the advances in chiral technology, a number of pharmaceuticals currently marketed as racemic drugs are undergoing re-assessment as chiral specific products or chiral switches. Despite the choice to foster either a single enantiomer or racemic drug, in the current regulatory environment, there will be a need for enantioselective investigations. This poses a big challenge to pharmaceutical analysts and chromatographers involved in drug development process. In pharmaceutical research and development stereochemical analytical methodology may be required to comprehend enantioselective drug action and disposition, chiral purity assessment, study stereochemical stability during formulation and production, assess dosage forms, enantiospecific bioavailability and bioequivalence investigations of chiral drugs. Besides pharmaceutical applications chiral analysis plays a major role in the study of biological and environmental samples and also in the forensic field. Chiral analysis methods and applications between the period 2010 and 2020 are exhaustively reviewed recently. There are number of articles, columns, and interviews in LCGC relating to emerging trends in chiral analysis and its application in drug discovery and development process. For chiral examination there is a need to have the right chiral environment. This could be provided as a plane polarized light, an additional chiral compound or by exploiting the inborn chirality of nature. The chiral analytical strategies incorporate physical, biological, and separation science techniques. Recently an optical-based absolute chiral analysis has been reported. The most frequently employed technique in enantioselective analysis involve the separation science techniques, in particular chiral chromatographic methods or chiral chromatography. Today wide range of CSPs are available commercially based on various chiral selectors including polysaccharides, cyclodextrins, glycopeptide antibiotics, proteins, Pirkle, crown ethers, etc. to achieve analysis of chiral molecules. (en)