In mathematics, a confluent hypergeometric function is a solution of a confluent hypergeometric equation, which is a degenerate form of a hypergeometric differential equation where two of the three regular singularities merge into an irregular singularity. The term confluent refers to the merging of singular points of families of differential equations; confluere is Latin for "to flow together". There are several common standard forms of confluent hypergeometric functions: * Kummer's (confluent hypergeometric) function M(a, b, z), introduced by Kummer, is a solution to Kummer's differential equation. This is also known as the confluent hypergeometric function of the first kind. There is a different and unrelated Kummer's function bearing the same name. * Tricomi's (confluent hypergeometric) function U(a, b, z) introduced by Francesco Tricomi, sometimes denoted by Ψ(a; b; z), is another solution to Kummer's equation. This is also known as the confluent hypergeometric function of the second kind. * Whittaker functions (for Edmund Taylor Whittaker) are solutions to Whittaker's equation. * Coulomb wave functions are solutions to the Coulomb wave equation. The Kummer functions, Whittaker functions, and Coulomb wave functions are essentially the same, and differ from each other only by elementary functions and change of variables. (en)
La fonction hypergéométrique confluente (ou fonction de Kummer) est :où désigne le symbole de Pochhammer. Elle est solution de l'équation différentielle d'ordre deux, appelée équation de Kummer : Elle est aussi définie par : Les fonctions de Bessel, la fonction gamma incomplète, les fonctions génératrices des moments des distributions bêta et bêta prime, les fonctions cylindre parabolique ou encore les polynômes d'Hermite et les polynômes de Laguerre peuvent être représentés à l'aide de fonctions hypergéométriques confluentes (cf. Slater). Whittaker a introduit des fonctions et qui sont également liées aux fonctions hypergéométriques confluentes. (fr)
In matematica, l'equazione ipergeometrica confluente o equazione di Kummer, da Ernst Kummer, è un'equazione differenziale lineare del secondo ordine ottenuta a partire dall'equazione di Papperitz-Riemann facendo confluire due singolarità in un solo punto; è strettamente legata con l'equazione ipergeometrica e le sue soluzioni, le funzioni ipergeometriche. Ciascuna delle soluzioni dell'equazione ipergeometrica confluente è analogamente chiamata funzione ipergeometrica confluente. Si individuano in particolare due soluzioni indipendenti, fornite da serie ipergeometriche: la prima è denotata con e viene detta funzione ipergeometrica di Kummer, mentre la seconda è denotata con e chiamata funzione di Whittaker, in riferimento a Edmund Taylor Whittaker, oppure anche funzione ipergeometrica confluente di Tricomi (da Francesco Tricomi) o funzione ipergeometrica di Gordon-Tricomi. Da notare che per si intende invece una funzione speciale non collegata alle precedenti. (it)
In mathematics, a confluent hypergeometric function is a solution of a confluent hypergeometric equation, which is a degenerate form of a hypergeometric differential equation where two of the three regular singularities merge into an irregular singularity. The term confluent refers to the merging of singular points of families of differential equations; confluere is Latin for "to flow together". There are several common standard forms of confluent hypergeometric functions: (en)
La fonction hypergéométrique confluente (ou fonction de Kummer) est :où désigne le symbole de Pochhammer. Elle est solution de l'équation différentielle d'ordre deux, appelée équation de Kummer : Elle est aussi définie par : (fr)
In matematica, l'equazione ipergeometrica confluente o equazione di Kummer, da Ernst Kummer, è un'equazione differenziale lineare del secondo ordine ottenuta a partire dall'equazione di Papperitz-Riemann facendo confluire due singolarità in un solo punto; è strettamente legata con l'equazione ipergeometrica e le sue soluzioni, le funzioni ipergeometriche. Ciascuna delle soluzioni dell'equazione ipergeometrica confluente è analogamente chiamata funzione ipergeometrica confluente. (it)