Cutwidth (original) (raw)

About DBpedia

In graph theory, the cutwidth of an undirected graph G = (V, E) is the smallest integer k with the following property: there is an ordering {v1, …, vn} of the vertices of G, such that for every l = 1, …, n – 1, there are at most k edges with one endpoint in {v1, …, vl} and the other endpoint in {vl + 1, …, vn} .

Property Value
dbo:abstract In graph theory, the cutwidth of an undirected graph G = (V, E) is the smallest integer k with the following property: there is an ordering {v1, …, vn} of the vertices of G, such that for every l = 1, …, n – 1, there are at most k edges with one endpoint in {v1, …, vl} and the other endpoint in {vl + 1, …, vn} . (en)
dbo:wikiPageID 69798178 (xsd:integer)
dbo:wikiPageLength 1371 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1111673184 (xsd:integer)
dbo:wikiPageWikiLink dbr:Pathwidth dbr:Undirected_graph dbc:Graph_invariants dbc:Integers dbr:Treewidth dbr:Graph_theory dbr:Integer dbr:Vertex_(graph_theory)
dbp:wikiPageUsesTemplate dbt:Combin-stub dbt:Math dbt:Mvar dbt:Reflist dbt:Short_description dbt:Sub
dct:subject dbc:Graph_invariants dbc:Integers
rdfs:comment In graph theory, the cutwidth of an undirected graph G = (V, E) is the smallest integer k with the following property: there is an ordering {v1, …, vn} of the vertices of G, such that for every l = 1, …, n – 1, there are at most k edges with one endpoint in {v1, …, vl} and the other endpoint in {vl + 1, …, vn} . (en)
rdfs:label Cutwidth (en)
owl:sameAs wikidata:Cutwidth https://global.dbpedia.org/id/GDwM4
prov:wasDerivedFrom wikipedia-en:Cutwidth?oldid=1111673184&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Cutwidth
is dbo:wikiPageWikiLink of dbr:Queue_number dbr:Arc_diagram dbr:Pathwidth dbr:Circular_layout
is foaf:primaryTopic of wikipedia-en:Cutwidth