In finance, a lattice model is a technique applied to the valuation of derivatives, where a discrete time model is required. For equity options, a typical example would be pricing an American option, where a decision as to option exercise is required at "all" times (any time) before and including maturity. A continuous model, on the other hand, such as Black–Scholes, would only allow for the valuation of European options, where exercise is on the option's maturity date. For interest rate derivatives lattices are additionally useful in that they address many of the issues encountered with continuous models, such as pull to par. The method is also used for valuing certain exotic options, where because of path dependence in the payoff, Monte Carlo methods for option pricing fail to account for optimal decisions to terminate the derivative by early exercise, though methods now exist for solving this problem. (en)
金融において、格子モデル(こうしもでる、英: lattice model)は、オプションの公正価値の計算に使われるモデルのひとつである。同モデルでは、現在とオプションの満期までの時間を N 個の離散的な期間に分割する。ある特定の時点 n において、モデルは n + 1 時点で無限の結果可能性を有し、世界の状況に関する時点 n から n + 1 までの間の変化の可能性は、枝(英: branch)により把握する。この過程は、n = 0 と n = N の間のあらゆる経路の可能性が探索されるまで繰り返される。そして、n から n + 1 までのすべての経路に対する確率が評価される。オプションの今日における公正価値が計算されるまで、この結果と確率は、樹形の向きを逆に辿って繰り返される。 オプションに関する単純な格子モデルは、二項価格評価モデル(にこうかかくひょうかもでる、英: binomial pricing model)である。 (ja)
金融において、格子モデル(こうしもでる、英: lattice model)は、オプションの公正価値の計算に使われるモデルのひとつである。同モデルでは、現在とオプションの満期までの時間を N 個の離散的な期間に分割する。ある特定の時点 n において、モデルは n + 1 時点で無限の結果可能性を有し、世界の状況に関する時点 n から n + 1 までの間の変化の可能性は、枝(英: branch)により把握する。この過程は、n = 0 と n = N の間のあらゆる経路の可能性が探索されるまで繰り返される。そして、n から n + 1 までのすべての経路に対する確率が評価される。オプションの今日における公正価値が計算されるまで、この結果と確率は、樹形の向きを逆に辿って繰り返される。 オプションに関する単純な格子モデルは、二項価格評価モデル(にこうかかくひょうかもでる、英: binomial pricing model)である。 (ja)
In finance, a lattice model is a technique applied to the valuation of derivatives, where a discrete time model is required. For equity options, a typical example would be pricing an American option, where a decision as to option exercise is required at "all" times (any time) before and including maturity. A continuous model, on the other hand, such as Black–Scholes, would only allow for the valuation of European options, where exercise is on the option's maturity date. For interest rate derivatives lattices are additionally useful in that they address many of the issues encountered with continuous models, such as pull to par. The method is also used for valuing certain exotic options, where because of path dependence in the payoff, Monte Carlo methods for option pricing fail to account fo (en)