Fungal DNA barcoding is the process of identifying species of the biological kingdom Fungi through the amplification and sequencing of specific DNA sequences and their comparison with sequences deposited in a DNA barcode database such as the ISHAM reference database, or the Barcode of Life Data System (BOLD). In this attempt, DNA barcoding relies on universal genes that are ideally present in all fungi with the same degree of sequence variation. The interspecific variation, i.e., the variation between species, in the chosen DNA barcode gene should exceed the intraspecific (within-species) variation. A fundamental problem in fungal systematics is the existence of teleomorphic and anamorphic stages in their life cycles. These morphs usually differ drastically in their phenotypic appearance, preventing a straightforward association of the asexual anamorph with the sexual teleomorph. Moreover, fungal species can comprise multiple strains that can vary in their morphology or in traits such as carbon- and nitrogen utilisation, which has often led to their description as different species, eventually producing long lists of synonyms. Fungal DNA barcoding can help to identify and associate anamorphic and teleomorphic stages of fungi, and through that to reduce the confusing multitude of fungus names. For this reason, mycologists were among the first to spearhead the investigation of species discrimination by means of DNA sequences, at least 10 years earlier than the DNA barcoding proposal for animals by Paul D. N. Hebert and colleagues in 2003, who popularised the term "DNA barcoding". The success of identification of fungi by means of DNA barcode sequences stands and falls with the quantitative (completeness) and qualitative (level of identification) aspect of the reference database. Without a database covering a broad taxonomic range of fungi, many identification queries will not result in a satisfyingly close match. Likewise, without a substantial curatorial effort to maintain the records at a high taxonomic level of identification, queries – even when they might have a close or exact match in the reference database – will not be informative if the closest match is only identified to phylum or class level. Another crucial prerequisite for DNA barcoding is the ability to unambiguously trace the provenance of DNA barcode data back to the originally sampled specimen, the so-called voucher specimen. This is common practice in biology along with the description of new taxa, where the voucher specimens, on which the taxonomic description is based, become the type specimens. When the identity of a certain taxon (or a genetic sequence in the case of DNA barcoding) is in doubt, the original specimen can be re-examined to review and ideally solve the issue. Voucher specimens should be clearly labelled as such, including a permanent voucher identifier that unambiguously connects the specimen with the DNA barcode data derived from it. Furthermore, these voucher specimens should be deposited in publicly accessible repositories like scientific collections or herbaria to preserve them for future reference and to facilitate research involving the deposited specimens. (en)