Genetic representation (original) (raw)
Als genetische Repräsentation (auch Problemrepräsentation) wird die Art und Weise bezeichnet, wie ein Optimierungsproblem codiert wird, sodass es mit einem evolutionären Algorithmus (EA) gelöst werden kann. EA suchen Lösungen für Optimierungsprobleme mit Methoden der natürlichen Evolution. Der Begriff der genetischen Repräsentation umfasst dabei sowohl die konkreten Datenstrukturen und Datentypen, mit denen das genetische Material der Lösungskandidaten in Form eines Genoms realisiert wird, als auch die Beziehungen zwischen Suchraum und Problemraum. Im einfachsten Fall entspricht der Suchraum dem Problemraum (direkte Repräsentation). Die Wahl der Problemrepräsentation ist gebunden an die Wahl der genetischen Operatoren, beide wirken sich entscheidend auf die Effizienz der Optimierung aus.
Property | Value |
---|---|
dbo:abstract | Als genetische Repräsentation (auch Problemrepräsentation) wird die Art und Weise bezeichnet, wie ein Optimierungsproblem codiert wird, sodass es mit einem evolutionären Algorithmus (EA) gelöst werden kann. EA suchen Lösungen für Optimierungsprobleme mit Methoden der natürlichen Evolution. Der Begriff der genetischen Repräsentation umfasst dabei sowohl die konkreten Datenstrukturen und Datentypen, mit denen das genetische Material der Lösungskandidaten in Form eines Genoms realisiert wird, als auch die Beziehungen zwischen Suchraum und Problemraum. Im einfachsten Fall entspricht der Suchraum dem Problemraum (direkte Repräsentation). Die Wahl der Problemrepräsentation ist gebunden an die Wahl der genetischen Operatoren, beide wirken sich entscheidend auf die Effizienz der Optimierung aus. Das Genom eines Lösungskandidaten hat oft die Form eines Bitstrings, einer Liste reeller Zahlen, einer Reihenfolge (bei kombinatorischen Problemen wie Travelling Salesman) oder eines Baumes. (de) In computer programming, genetic representation is a way of presenting solutions/individuals in evolutionary computation methods. Genetic representation can encode appearance, behavior, physical qualities of individuals. Designing a good genetic representation that is expressive and evolvable is a hard problem in evolutionary computation. Difference in genetic representations is one of the major criteria drawing a line between known classes of evolutionary computation. Terminology is often analogous with natural genetics. The block of computer memory that represents one candidate solution is called an individual. The data in that block is called a chromosome. Each chromosome consists of genes. The possible values of a particular gene are called alleles. A programmer may represent all the individuals of a population using binary encoding, permutational encoding, encoding by tree, or any one of several other representations. Genetic algorithms (GAs) typically linear representations; these are often, but not always, binary. Holland's original description of GA used arrays of bits. Arrays of other types and structures can be used in essentially the same way. The main property that makes these genetic representations convenient is that their parts are easily aligned due to their fixed size. This facilitates simple crossover operation. Variable length representations were also explored in Genetic algorithms, but crossover implementation is more complex in this case. Evolution strategy uses linear real-valued representations, e.g. an array of real values. It uses mostly gaussian mutation and blending/averaging crossover. Genetic programming (GP) pioneered tree-like representations and developed genetic operators suitable for such representations. Tree-like representations are used in GP to represent and evolve functional programs with desired properties. Human-based genetic algorithm (HBGA) offers a way to avoid solving hard representation problems by outsourcing all genetic operators to outside agents, in this case, humans. The algorithm has no need for knowledge of a particular fixed genetic representation as long as there are enough external agents capable of handling those representations, allowing for free-form and evolving genetic representations. (en) |
dbo:wikiPageID | 3558944 (xsd:integer) |
dbo:wikiPageLength | 3928 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1119627003 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Binary_tree dbr:Allele dbr:Genetic_operator dbr:Genetic_programming dbr:Genetics dbr:Genetic_algorithm dbr:Computer_programming dbr:Directed_graph dbr:John_Henry_Holland dbr:Bit dbr:Parse_tree dbc:Evolutionary_algorithms dbr:Human-based_genetic_algorithm dbr:HBGA dbr:Evolution_strategy dbr:Evolutionary_computation dbr:Gaussian |
dbp:wikiPageUsesTemplate | dbt:Refimprove dbt:Reflist |
dct:subject | dbc:Evolutionary_algorithms |
gold:hypernym | dbr:Way |
rdf:type | yago:Abstraction100002137 yago:Act100030358 yago:Activity100407535 yago:Algorithm105847438 yago:Event100029378 yago:Procedure101023820 yago:PsychologicalFeature100023100 yago:YagoPermanentlyLocatedEntity yago:Rule105846932 yago:WikicatEvolutionaryAlgorithms |
rdfs:comment | Als genetische Repräsentation (auch Problemrepräsentation) wird die Art und Weise bezeichnet, wie ein Optimierungsproblem codiert wird, sodass es mit einem evolutionären Algorithmus (EA) gelöst werden kann. EA suchen Lösungen für Optimierungsprobleme mit Methoden der natürlichen Evolution. Der Begriff der genetischen Repräsentation umfasst dabei sowohl die konkreten Datenstrukturen und Datentypen, mit denen das genetische Material der Lösungskandidaten in Form eines Genoms realisiert wird, als auch die Beziehungen zwischen Suchraum und Problemraum. Im einfachsten Fall entspricht der Suchraum dem Problemraum (direkte Repräsentation). Die Wahl der Problemrepräsentation ist gebunden an die Wahl der genetischen Operatoren, beide wirken sich entscheidend auf die Effizienz der Optimierung aus. (de) In computer programming, genetic representation is a way of presenting solutions/individuals in evolutionary computation methods. Genetic representation can encode appearance, behavior, physical qualities of individuals. Designing a good genetic representation that is expressive and evolvable is a hard problem in evolutionary computation. Difference in genetic representations is one of the major criteria drawing a line between known classes of evolutionary computation. (en) |
rdfs:label | Genetische Repräsentation (de) Genetic representation (en) |
owl:sameAs | freebase:Genetic representation yago-res:Genetic representation wikidata:Genetic representation dbpedia-bg:Genetic representation dbpedia-de:Genetic representation https://global.dbpedia.org/id/4ke8t |
prov:wasDerivedFrom | wikipedia-en:Genetic_representation?oldid=1119627003&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Genetic_representation |
is dbo:wikiPageWikiLink of | dbr:Pose_(computing) dbr:Genetic_programming dbr:Genetic_algorithm dbr:Crossover_(genetic_algorithm) dbr:Linear_genetic_programming dbr:Evolutionary_algorithm dbr:Evolutionary_programming dbr:Outline_of_machine_learning |
is foaf:primaryTopic of | wikipedia-en:Genetic_representation |