Hypoelliptic operator (original) (raw)

About DBpedia

En mathématiques, un opérateur différentiel défini sur un ouvert est appelé opérateur hypoelliptique si pour toute distribution définie sur un ouvert telle que soit une fonction lisse, est nécessairement une fonction lisse également. Si on remplace la condition d'être une fonction lisse par être une fonction analytique, on parle d'opérateurs hypoelliptiques analytiques.

Property Value
dbo:abstract In the theory of partial differential equations, a partial differential operator defined on an open subset is called hypoelliptic if for every distribution defined on an open subset such that is (smooth), must also be . If this assertion holds with replaced by real-analytic, then is said to be analytically hypoelliptic. Every elliptic operator with coefficients is hypoelliptic. In particular, the Laplacian is an example of a hypoelliptic operator (the Laplacian is also analytically hypoelliptic). In addition, the operator for the heat equation (where ) is hypoelliptic but not elliptic. However, the operator for the wave equation (where ) is not hypoelliptic. (en) En mathématiques, un opérateur différentiel défini sur un ouvert est appelé opérateur hypoelliptique si pour toute distribution définie sur un ouvert telle que soit une fonction lisse, est nécessairement une fonction lisse également. Si on remplace la condition d'être une fonction lisse par être une fonction analytique, on parle d'opérateurs hypoelliptiques analytiques. (fr) In matematica, in particolare nell'ambito dello studio delle equazioni alle derivate parziali, un operatore differenziale parziale definito su un aperto è un operatore ipoellittico se, per ogni distribuzione definita su un aperto tale per cui è di classe (cioè una funzione liscia), si verifica che anche deve essere di classe . Se tale richiesta è soddisfatta quando, invece che funzioni di classe , si richiede che e siano una funzione analitica reale, allora è detto "ipoellittico analitico" (analytically hypoelliptic). Ogni operatore ellittico con coefficienti di classe è ipoellittico. In particolare, l'operatore di Laplace è un esempio di operatore ipoellittico (e ipoellittico analitico). L'equazione del calore: è ipoellittica ma non ellittica, mentre l'equazione delle onde: non è ipoellittica. (it) 数学の、特に偏微分方程式の理論において、ある開部分集合 上で定義される偏微分作用素 が準楕円型(じゅんだえんがた、英: hypoelliptic)であるとは、ある開部分集合 上で定義されるすべての超函数 に対し、 が (滑らか)であるなら もまた となることを言う。 が実解析的という条件で置き換えられてもこの主張が成立するとき、 は解析的準楕円型(analytically hypoelliptic)と呼ばれる。 係数が であるようなすべての楕円型作用素は、準楕円型である。特にラプラシアンは楕円型作用素の一例である(ラプラシアンはまた解析的準楕円型でもある)。熱方程式の作用素 (但し )は準楕円型であるが、楕円型ではない。波動方程式の作用素 (但し )は準楕円型ではない。 (ja) 편미분 방정식 이론에서, 준타원형 미분 연산자(準楕圓型微分演算子, 영어: hypoelliptic differential operator)는 매끄러운 함수의 원상이 매끄러운 함수인 미분 연산자이다. 매끄러운 계수의 모든 타원형 미분 연산자는 준타원형이지만, 타원형이 아닌 준타원형 미분 연산자가 존재한다. (ko) Гипоэллиптический оператор — дифференциальный оператор в частных производных, фундаментальное решение которого принадлежит классу во всех точках пространства, за исключением начала координат. (ru) 次椭圆型算子是数学偏微分方程中的微分算子。开集中的偏微分算子被称为次椭圆型算子,如果对开子集中定义的任何分布都满足和都是光滑。 (zh)
dbo:wikiPageID 9282128 (xsd:integer)
dbo:wikiPageLength 2386 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1117698431 (xsd:integer)
dbo:wikiPageWikiLink dbr:Mathematical_analysis dbr:Elliptic_operator dbr:Smooth_function dbr:Wave_equation dbr:Partial_differential_equation dbr:Differential_operator dbr:Heat_equation dbc:Differential_operators dbc:Partial_differential_equations dbr:Laplacian dbr:Distribution_(mathematics) dbr:Open_subset
dbp:id 8059 (xsd:integer)
dbp:title Hypoelliptic (en)
dbp:wikiPageUsesTemplate dbt:Cite_book dbt:PlanetMath_attribution
dcterms:subject dbc:Differential_operators dbc:Partial_differential_equations
rdf:type yago:WikicatPartialDifferentialEquations yago:Abstraction100002137 yago:Communication100033020 yago:DifferentialEquation106670521 yago:Equation106669864 yago:Function113783816 yago:MathematicalRelation113783581 yago:MathematicalStatement106732169 yago:Message106598915 yago:Operator113786413 yago:PartialDifferentialEquation106670866 yago:Relation100031921 yago:Statement106722453 yago:WikicatDifferentialOperators
rdfs:comment En mathématiques, un opérateur différentiel défini sur un ouvert est appelé opérateur hypoelliptique si pour toute distribution définie sur un ouvert telle que soit une fonction lisse, est nécessairement une fonction lisse également. Si on remplace la condition d'être une fonction lisse par être une fonction analytique, on parle d'opérateurs hypoelliptiques analytiques. (fr) 数学の、特に偏微分方程式の理論において、ある開部分集合 上で定義される偏微分作用素 が準楕円型(じゅんだえんがた、英: hypoelliptic)であるとは、ある開部分集合 上で定義されるすべての超函数 に対し、 が (滑らか)であるなら もまた となることを言う。 が実解析的という条件で置き換えられてもこの主張が成立するとき、 は解析的準楕円型(analytically hypoelliptic)と呼ばれる。 係数が であるようなすべての楕円型作用素は、準楕円型である。特にラプラシアンは楕円型作用素の一例である(ラプラシアンはまた解析的準楕円型でもある)。熱方程式の作用素 (但し )は準楕円型であるが、楕円型ではない。波動方程式の作用素 (但し )は準楕円型ではない。 (ja) 편미분 방정식 이론에서, 준타원형 미분 연산자(準楕圓型微分演算子, 영어: hypoelliptic differential operator)는 매끄러운 함수의 원상이 매끄러운 함수인 미분 연산자이다. 매끄러운 계수의 모든 타원형 미분 연산자는 준타원형이지만, 타원형이 아닌 준타원형 미분 연산자가 존재한다. (ko) Гипоэллиптический оператор — дифференциальный оператор в частных производных, фундаментальное решение которого принадлежит классу во всех точках пространства, за исключением начала координат. (ru) 次椭圆型算子是数学偏微分方程中的微分算子。开集中的偏微分算子被称为次椭圆型算子,如果对开子集中定义的任何分布都满足和都是光滑。 (zh) In the theory of partial differential equations, a partial differential operator defined on an open subset is called hypoelliptic if for every distribution defined on an open subset such that is (smooth), must also be . If this assertion holds with replaced by real-analytic, then is said to be analytically hypoelliptic. Every elliptic operator with coefficients is hypoelliptic. In particular, the Laplacian is an example of a hypoelliptic operator (the Laplacian is also analytically hypoelliptic). In addition, the operator for the heat equation (where ) is not hypoelliptic. (en) In matematica, in particolare nell'ambito dello studio delle equazioni alle derivate parziali, un operatore differenziale parziale definito su un aperto è un operatore ipoellittico se, per ogni distribuzione definita su un aperto tale per cui è di classe (cioè una funzione liscia), si verifica che anche deve essere di classe . Se tale richiesta è soddisfatta quando, invece che funzioni di classe , si richiede che e siano una funzione analitica reale, allora è detto "ipoellittico analitico" (analytically hypoelliptic). è ipoellittica ma non ellittica, mentre l'equazione delle onde: (it)
rdfs:label Opérateur hypoelliptique (fr) Operatore ipoellittico (it) Hypoelliptic operator (en) 준타원형 미분 연산자 (ko) 準楕円型作用素 (ja) Гипоэллиптический оператор (ru) 次椭圆形算子 (zh)
owl:sameAs freebase:Hypoelliptic operator wikidata:Hypoelliptic operator dbpedia-fr:Hypoelliptic operator dbpedia-it:Hypoelliptic operator dbpedia-ja:Hypoelliptic operator dbpedia-ko:Hypoelliptic operator dbpedia-ru:Hypoelliptic operator dbpedia-zh:Hypoelliptic operator https://global.dbpedia.org/id/3qCPU yago-res:Hypoelliptic operator
prov:wasDerivedFrom wikipedia-en:Hypoelliptic_operator?oldid=1117698431&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Hypoelliptic_operator
is dbo:wikiPageRedirects of dbr:Hypoelliptic dbr:Hypoelliptic_partial_differential_equation dbr:Hypoellipticity dbr:Analytic_hypoelliptic dbr:Analytically_hypoelliptic dbr:Elliptic_regularity
is dbo:wikiPageWikiLink of dbr:Hyperbolic_partial_differential_equation dbr:Elliptic_operator dbr:Cauchy–Riemann_equations dbr:Hypoelliptic dbr:Hypoelliptic_partial_differential_equation dbr:Hypoellipticity dbr:Analytic_hypoelliptic dbr:Analytically_hypoelliptic dbr:Elliptic_regularity
is foaf:primaryTopic of wikipedia-en:Hypoelliptic_operator