Kagome metal (original) (raw)
Kagome metal is a ferromagnetic quantum material that was first used in literature in 2011 for a compound of Fe3Sn2. However, this material had been created for several decades. In this material, metal atoms are arranged in a lattice resembling the Japanese kagome basket weaving pattern. The same material has also been termed as "kagome magnet" since 2018. Kagome metal (or magnets) refer to a new class of magnetic quantum materials hosting kagome lattice and topological band structure. They include 3-1 materials (example: antiferromagnet Mn3Sn), 1-1 materials (example: paramagnet CoSn), 1-6-6 materials (example: ferrimagnet TbMn6Sn6), 3-2-2 materials (example: hard ferromagnet Co3Sn2S2), and 3-2 materials (example: soft ferromagnet Fe3Sn2), thus demonstrating a variety of crystal and magne
Property | Value |
---|---|
dbo:abstract | Kagome metal is a ferromagnetic quantum material that was first used in literature in 2011 for a compound of Fe3Sn2. However, this material had been created for several decades. In this material, metal atoms are arranged in a lattice resembling the Japanese kagome basket weaving pattern. The same material has also been termed as "kagome magnet" since 2018. Kagome metal (or magnets) refer to a new class of magnetic quantum materials hosting kagome lattice and topological band structure. They include 3-1 materials (example: antiferromagnet Mn3Sn), 1-1 materials (example: paramagnet CoSn), 1-6-6 materials (example: ferrimagnet TbMn6Sn6), 3-2-2 materials (example: hard ferromagnet Co3Sn2S2), and 3-2 materials (example: soft ferromagnet Fe3Sn2), thus demonstrating a variety of crystal and magnetic structures. They generally feature a 3d transition metal based magnetic kagome lattice with an in-plane lattice constant ~5.5 Å. Their 3d electrons dominate the low-energy electronic structure in these quantum materials, thus exhibiting electronic correlation. Crucially, the kagome lattice electrons generally feature Dirac band crossings and flat band, which are the source for nontrivial band topology. Moreover, they all contain the heavy element Sn, which can provide strong spin-orbit coupling to the system. Therefore, this is an ideal system to explore the rich interplay between geometry, correlation, and topology. In the Kagome structure, atoms are arranged into layered sets of overlapping triangles so that there exist large empty hexagonal spaces. Electrons in the metal experience a "three-dimensional cousin of the quantum Hall effect". The inherent magnetism of the metal and the quantum-mechanical magnetism induce electrons to flow around the edges of the triangular crystals, akin to superconductivity. Unlike superconductivity, this structure and behavior is stable at room temperature. Other structures were shown to exhibit the quantum hall effect at very low temperatures with an external magnetic field as high as 1 million times the strength that of the earth. By building metal out of a ferromagnetic material, that exterior magnetic field was no longer necessary, and the quantum Hall effect persists into room temperature. The Kagome alloy Fe3Sn2 displayed several exotic quantum electronic behaviors that add to its quantum topology. The lattice harbors massive Dirac fermions, Berry curvature, band gaps, and spin-orbit activity, all of which are conducive to the Hall Effect and zero energy loss electric currents. These behaviors are promising for the development of technologies in quantum computing, spin superconductors, and low power electronics. As of 2019, more Kagome materials displaying similar topology were being experimented with, such as in magnetically doped Weyl-Semimetals Co2MnGa and Co3Sn2S2. The new class of Kagome metals AV3Sb5 (A = Cs, Rb, K) were also discovered in 2019, with CsV3Sb5 found to possess numerous exotic properties, including superconductivity, topological states, and other exotic phenomena. (en) O metal Kagome é um material quântico ferromagnético, que foi usado pela primeira vez na literatura em 2011 para um composto de Fe3Sn2.O mesmo material também foi denominado como "ímã kagome" desde 2018.[ Os metais Kagome têm a capacidade de exibir um comportamento coletivo quando resfriados abaixo da temperatura ambiente. Ele recebe o nome de uma técnica tradicional japonesa de tecelagem de cestas que produz uma rede de triângulos simétricos entrelaçados. A liga Kagome Fe3Sn2 exibiu vários comportamentos eletrônicos quânticos exóticos que se somam à sua topologia quântica. A rede abriga férmions de Dirac massivos, curvatura de Berry, atividade de órbita de spin, todos os quais são propícios ao Efeito Hall e às correntes elétricas de perda de energia zero. Esses comportamentos são promissores para o desenvolvimento de tecnologias em computação quântica, supercondutores de spin e eletrônica de baixa potência. A partir de 2019, mais materiais Kagome exibindo topologia semelhante estavam sendo experimentados, como em Weyl-Semimetals magneticamente dopados Co2MnGa e Co3Sn2S2. Em 2022, Mingu Kang et al descobriram descobriu como a estrutura eletrônica distinta da rede kagome está ligada aos fenômenos de muitos corpos observados como a e origem da ordem de carga no supercondutor kagome topológico CsV3Sb5. A superfície de Fermi do material kagome é feita de três elementos (césio, vanádio e antimônio). (pt) |
dbo:wikiPageID | 56892858 (xsd:integer) |
dbo:wikiPageLength | 17553 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1116994170 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Quantum_Hall_effect dbr:De_Haas–van_Alphen_effect dbr:Alloy dbr:Nature_(journal) dbr:Quantum_topology dbr:Magnetic_skyrmion dbr:Trihexagonal_tiling dbr:Lattice_(discrete_subgroup) dbr:Superconductivity dbr:Herbertsmithite dbc:2018_in_science dbr:Atomic_orbital dbr:Advanced_Light_Source dbc:Materials dbr:Fermion dbr:Magnon dbr:Nature_Communications dbr:Weyl_semimetal |
dbp:wikiPageUsesTemplate | dbt:As_of dbt:Chem2 dbt:Chembox dbt:Chembox_Identifiers dbt:Chembox_Properties dbt:Citation dbt:Reflist dbt:Chembox_Related |
dct:subject | dbc:2018_in_science dbc:Materials |
rdf:type | owl:Thing dul:ChemicalObject dbo:ChemicalSubstance wikidata:Q11173 dbo:ChemicalCompound |
rdfs:comment | Kagome metal is a ferromagnetic quantum material that was first used in literature in 2011 for a compound of Fe3Sn2. However, this material had been created for several decades. In this material, metal atoms are arranged in a lattice resembling the Japanese kagome basket weaving pattern. The same material has also been termed as "kagome magnet" since 2018. Kagome metal (or magnets) refer to a new class of magnetic quantum materials hosting kagome lattice and topological band structure. They include 3-1 materials (example: antiferromagnet Mn3Sn), 1-1 materials (example: paramagnet CoSn), 1-6-6 materials (example: ferrimagnet TbMn6Sn6), 3-2-2 materials (example: hard ferromagnet Co3Sn2S2), and 3-2 materials (example: soft ferromagnet Fe3Sn2), thus demonstrating a variety of crystal and magne (en) O metal Kagome é um material quântico ferromagnético, que foi usado pela primeira vez na literatura em 2011 para um composto de Fe3Sn2.O mesmo material também foi denominado como "ímã kagome" desde 2018.[ Os metais Kagome têm a capacidade de exibir um comportamento coletivo quando resfriados abaixo da temperatura ambiente. Ele recebe o nome de uma técnica tradicional japonesa de tecelagem de cestas que produz uma rede de triângulos simétricos entrelaçados. (pt) |
rdfs:label | Kagome metal (en) Metal Kagome (pt) |
owl:sameAs | wikidata:Kagome metal dbpedia-pt:Kagome metal https://global.dbpedia.org/id/6Wdvr |
prov:wasDerivedFrom | wikipedia-en:Kagome_metal?oldid=1116994170&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Kagome_metal |
is dbo:wikiPageRedirects of | dbr:Fe3Sn2 |
is dbo:wikiPageWikiLink of | dbr:Quantum_spin_liquid dbr:Trihexagonal_tiling dbr:Fe3Sn2 |
is foaf:primaryTopic of | wikipedia-en:Kagome_metal |