dbo:abstract
- في الرياضيات، زمرة كلاينية هي ... أسست نظرية الزمر الكلاينية العامة من طرف فيليكس كلاين (1883) وهنري بوانكاريه (1883). (ar)
- In der Mathematik spielen Kleinsche Gruppen eine zentrale Rolle in 3-dimensionaler Topologie, hyperbolischer Geometrie und komplexer Analysis. (de)
- En matemáticas, un grupo kleiniano es un subgrupo discreto de PSL(2, C). El centro del grupo PSL(2, C) de matrices complejas 2 por 2 de determinante módulo 1 tiene varias representaciones naturales: como transformaciones conformes de la esfera de Riemann, y como isometrías que preservan la orientación en el espacio hiperbólico tridimensional H3, y como aplicaciones conformes que conservan la orientación y que llevan la bola unidad abierta B3 de R3 en sí misma. Además un grupo kleiniano se puede ver como un subgrupo discreto actuando sobre uno de estos espacios. Hay algunas variaciones en la definición de un grupo kleiniano: a veces se permite que los grupos kleinianos sean subgrupos de (PSL(2, C) extendido por conjugaciones complejas), en otras palabras, que tengan elementos de reversión de la orientación; y a veces se asume que sean , mientras que otras se requiere que actúen adecuadamente discontinuamente sobre un subconjunto abierto no vacío de la esfera de Riemann. Se dice que un grupo kleiniano es de tipo 1 si el es la esfera de Riemann completa, y en otro caso se dice que es de tipo 2. La teoría de grupos kleinianos generales fue iniciada por y quien le puso el nombre de Klein. El caso especial de los había sido estudiado unos pocos años antes, en 1877, por Schottky. (es)
- In mathematics, a Kleinian group is a discrete subgroup of the group of orientation-preserving isometries of hyperbolic 3-space H3. The latter, identifiable with PSL(2, C), is the quotient group of the 2 by 2 complex matrices of determinant 1 by their center, which consists of the identity matrix and its product by −1. PSL(2, C) has a natural representation as orientation-preserving conformal transformations of the Riemann sphere, and as orientation-preserving conformal transformations of the open unit ball B3 in R3. The group of Möbius transformations is also related as the non-orientation-preserving isometry group of H3, PGL(2, C). So, a Kleinian group can be regarded as a discrete subgroup acting on one of these spaces. (en)
- 군론에서 클라인 부분군(Klein部分群, 영어: Kleinian subgroup)은 의 이산 부분군이다. (ko)
- Клейнова группа — группы дробно-линейных преобразованийрасширенной комплексной плоскости, являющаяся собственно разрывной. Начало изучения положено в 1883 году Феликсом Клейном и Анри Пуанкаре. Примеры: * — это группа Клейна вида , где — положительное число, не являющееся квадратом какого-либо числа; * группа симметрий периодического замощения гиперболического трёхмерного пространства — группа Клейна. (ru)
rdfs:comment
- في الرياضيات، زمرة كلاينية هي ... أسست نظرية الزمر الكلاينية العامة من طرف فيليكس كلاين (1883) وهنري بوانكاريه (1883). (ar)
- In der Mathematik spielen Kleinsche Gruppen eine zentrale Rolle in 3-dimensionaler Topologie, hyperbolischer Geometrie und komplexer Analysis. (de)
- In mathematics, a Kleinian group is a discrete subgroup of the group of orientation-preserving isometries of hyperbolic 3-space H3. The latter, identifiable with PSL(2, C), is the quotient group of the 2 by 2 complex matrices of determinant 1 by their center, which consists of the identity matrix and its product by −1. PSL(2, C) has a natural representation as orientation-preserving conformal transformations of the Riemann sphere, and as orientation-preserving conformal transformations of the open unit ball B3 in R3. The group of Möbius transformations is also related as the non-orientation-preserving isometry group of H3, PGL(2, C). So, a Kleinian group can be regarded as a discrete subgroup acting on one of these spaces. (en)
- 군론에서 클라인 부분군(Klein部分群, 영어: Kleinian subgroup)은 의 이산 부분군이다. (ko)
- Клейнова группа — группы дробно-линейных преобразованийрасширенной комплексной плоскости, являющаяся собственно разрывной. Начало изучения положено в 1883 году Феликсом Клейном и Анри Пуанкаре. Примеры: * — это группа Клейна вида , где — положительное число, не являющееся квадратом какого-либо числа; * группа симметрий периодического замощения гиперболического трёхмерного пространства — группа Клейна. (ru)
- En matemáticas, un grupo kleiniano es un subgrupo discreto de PSL(2, C). El centro del grupo PSL(2, C) de matrices complejas 2 por 2 de determinante módulo 1 tiene varias representaciones naturales: como transformaciones conformes de la esfera de Riemann, y como isometrías que preservan la orientación en el espacio hiperbólico tridimensional H3, y como aplicaciones conformes que conservan la orientación y que llevan la bola unidad abierta B3 de R3 en sí misma. Además un grupo kleiniano se puede ver como un subgrupo discreto actuando sobre uno de estos espacios. (es)