La geometria de l'esfera de Lie és una teoria geomètrica del pla o l'espai en què el concepte fonamental és la circumferència o l'esfera. Fou introduïda per Sophus Lie al segle xix. La idea principal que condueix a la geometria de l'esfera de Lie és tractar les rectes (o plans) com a circumferències (o esferes) de radi infinit i tractar els punts del pla (o de l'espai) com a circumferències (o esferes) de radi zero. L'espai de circumferències en el pla (o esferes a l'espai), incloent-hi punts i rectes (o plans), resulta ser una varietat coneguda com a (una a l'espai projectiu). La geometria de l'esfera de Lie és la geometria de la quàdrica de Lie i les transformacions de Lie que la preserven. Aquesta geometria pot ser difícil de visualitzar perquè les transformacions de Lie no preserven els punts en general: els punts es poden transformar en circumferències (o esferes). Per treballar-hi, les corbes del pla i les superfícies de l'espai s'estudien a través dels seus aixecaments de contacte, que estan determinats pels seus espais tangents. Això converteix en naturals els conceptes de d'una corba i les d'una superfície. També permet tractar de manera natural les i obtenir una solució conceptual del problema d'Apol·loni. La geometria de l'esfera de Lie es pot definir en qualsevol dimensió, però els casos del pla i l'espai tridimensional són els més rellevants. En el cas del pla, Lie observà una semblança notable entre la quàdrica de Lie d'esferes en 3 dimensions i l'espai de rectes d'un espai projectiu de dimensió 3, que és també una hipersuperfície quàdrica d'un espai projectiu de dimensió 5, anomenada la o de Plücker. Aquesta semblança menà Lie a obtenir la seva famosa «correspondència recta-esfera» entre l'espai de rectes i l'espai d'esferes a l'espai tridimensional. (ca)
Lie sphere geometry is a geometrical theory of planar or spatial geometry in which the fundamental concept is the circle or sphere. It was introduced by Sophus Lie in the nineteenth century. The main idea which leads to Lie sphere geometry is that lines (or planes) should be regarded as circles (or spheres) of infinite radius and that points in the plane (or space) should be regarded as circles (or spheres) of zero radius. The space of circles in the plane (or spheres in space), including points and lines (or planes) turns out to be a manifold known as the Lie quadric (a quadric hypersurface in projective space). Lie sphere geometry is the geometry of the Lie quadric and the Lie transformations which preserve it. This geometry can be difficult to visualize because Lie transformations do not preserve points in general: points can be transformed into circles (or spheres). To handle this, curves in the plane and surfaces in space are studied using their contact lifts, which are determined by their tangent spaces. This provides a natural realisation of the osculating circle to a curve, and the of a surface. It also allows for a natural treatment of Dupin cyclides and a conceptual solution of the problem of Apollonius. Lie sphere geometry can be defined in any dimension, but the case of the plane and 3-dimensional space are the most important. In the latter case, Lie noticed a remarkable similarity between the Lie quadric of spheres in 3-dimensions, and the space of lines in 3-dimensional projective space, which is also a quadric hypersurface in a 5-dimensional projective space, called the Plücker or Klein quadric. This similarity led Lie to his famous "line-sphere correspondence" between the space of lines and the space of spheres in 3-dimensional space. (en)