dbo:abstract |
In axiomatic set theory, a function f : Ord → Ord is called normal (or a normal function) if and only if it is continuous (with respect to the order topology) and strictly monotonically increasing. This is equivalent to the following two conditions: 1. * For every limit ordinal γ (i.e. γ is neither zero nor a successor), it is the case that f(γ) = sup {f(ν) : ν < γ}. 2. * For all ordinals α < β, it is the case that f(α) < f(β). (en) 집합론에서 정규 함수(正規函數, 영어: normal function)는 그 도함수를 취할 수 있는, 정의역과 공역이 순서수의 모임인 연속 증가 함수이다. 이를 사용하여 매우 큰 가산 순서수들을 나타낼 수 있다. (ko) |
dbo:wikiPageExternalLink |
https://archive.org/details/notesonlogicsett0000john |
dbo:wikiPageID |
404306 (xsd:integer) |
dbo:wikiPageLength |
3578 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1100402096 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Cambridge_University_Press dbr:Monotonic_function dbr:Beth_number dbr:Limit_ordinal dbr:Continuous_function dbr:Order_topology dbr:Ordinal_arithmetic dbr:Successor_ordinal dbr:Axiomatic_set_theory dbc:Set_theory dbr:Aleph_number dbr:Cardinal_number dbc:Ordinal_numbers dbr:Supremum dbr:Ordinal_number dbr:Fixed-point_lemma_for_normal_functions dbr:Veblen_function |
dbp:wikiPageUsesTemplate |
dbt:Citation dbt:Reflist dbt:Short_description dbt:Mset |
dcterms:subject |
dbc:Set_theory dbc:Ordinal_numbers |
gold:hypernym |
dbr:Iff |
rdf:type |
yago:WikicatOrdinalNumbers yago:Abstraction100002137 yago:DefiniteQuantity113576101 yago:Measure100033615 yago:Number113582013 yago:OrdinalNumber113597280 |
rdfs:comment |
In axiomatic set theory, a function f : Ord → Ord is called normal (or a normal function) if and only if it is continuous (with respect to the order topology) and strictly monotonically increasing. This is equivalent to the following two conditions: 1. * For every limit ordinal γ (i.e. γ is neither zero nor a successor), it is the case that f(γ) = sup {f(ν) : ν < γ}. 2. * For all ordinals α < β, it is the case that f(α) < f(β). (en) 집합론에서 정규 함수(正規函數, 영어: normal function)는 그 도함수를 취할 수 있는, 정의역과 공역이 순서수의 모임인 연속 증가 함수이다. 이를 사용하여 매우 큰 가산 순서수들을 나타낼 수 있다. (ko) |
rdfs:label |
정규 함수 (ko) Normal function (en) |
owl:sameAs |
freebase:Normal function yago-res:Normal function wikidata:Normal function dbpedia-ko:Normal function https://global.dbpedia.org/id/4sanU |
prov:wasDerivedFrom |
wikipedia-en:Normal_function?oldid=1100402096&ns=0 |
foaf:isPrimaryTopicOf |
wikipedia-en:Normal_function |
is dbo:knownFor of |
dbr:Hellmuth_Kneser |
is dbo:wikiPageDisambiguates of |
dbr:Normal |
is dbo:wikiPageRedirects of |
dbr:Derivative_(set_theory) |
is dbo:wikiPageWikiLink of |
dbr:Continuous_function dbr:Normal dbr:Glossary_of_set_theory dbr:Continuous_function_(set_theory) dbr:Epsilon_number dbr:Club_set dbr:Derivative_(set_theory) dbr:Hellmuth_Kneser dbr:Fixed-point_lemma_for_normal_functions dbr:Veblen_function dbr:Rathjen's_psi_function dbr:Normal_sequence |
is dbp:knownFor of |
dbr:Hellmuth_Kneser |
is foaf:primaryTopic of |
wikipedia-en:Normal_function |