Occam learning (original) (raw)

About DBpedia

In computational learning theory, Occam learning is a model of algorithmic learning where the objective of the learner is to output a succinct representation of received training data. This is closely related to probably approximately correct (PAC) learning, where the learner is evaluated on its predictive power of a test set. Occam learnability implies PAC learning, and for a wide variety of concept classes, the converse is also true: PAC learnability implies Occam learnability.

Property Value
dbo:abstract In computational learning theory, Occam learning is a model of algorithmic learning where the objective of the learner is to output a succinct representation of received training data. This is closely related to probably approximately correct (PAC) learning, where the learner is evaluated on its predictive power of a test set. Occam learnability implies PAC learning, and for a wide variety of concept classes, the converse is also true: PAC learnability implies Occam learnability. (en) Оккамово обучение в теории вычислительного обучения является моделью , где целью обучения является получение сжатого представления имеющихся тренировочных данных. Метод тесно связан с почти корректным обучением (ПК обучение, англ. Probably Approximately Correct learning, PAC learning), где учитель оценивает прогнозирующую способность тестового набора. Оккамова обучаемость влечёт ПК обучение и для широкого класса понятий обратное тоже верно — ПК обучаемость влечёт оккамову обучаемость. (ru)
dbo:wikiPageID 44577560 (xsd:integer)
dbo:wikiPageLength 10840 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1085332514 (xsd:integer)
dbo:wikiPageWikiLink dbr:Probably_approximately_correct_learning dbr:Deterministic_finite_automaton dbc:Computational_learning_theory dbr:Concept_class dbr:Computational_learning_theory dbc:Machine_learning dbc:Theoretical_computer_science dbr:Occam’s_Razor dbr:Structural_Risk_Minimization
dbp:wikiPageUsesTemplate dbt:Reflist dbt:Short_description dbt:Machine_learning
dct:subject dbc:Computational_learning_theory dbc:Machine_learning dbc:Theoretical_computer_science
gold:hypernym dbr:Model
rdf:type dbo:Person
rdfs:comment In computational learning theory, Occam learning is a model of algorithmic learning where the objective of the learner is to output a succinct representation of received training data. This is closely related to probably approximately correct (PAC) learning, where the learner is evaluated on its predictive power of a test set. Occam learnability implies PAC learning, and for a wide variety of concept classes, the converse is also true: PAC learnability implies Occam learnability. (en) Оккамово обучение в теории вычислительного обучения является моделью , где целью обучения является получение сжатого представления имеющихся тренировочных данных. Метод тесно связан с почти корректным обучением (ПК обучение, англ. Probably Approximately Correct learning, PAC learning), где учитель оценивает прогнозирующую способность тестового набора. Оккамова обучаемость влечёт ПК обучение и для широкого класса понятий обратное тоже верно — ПК обучаемость влечёт оккамову обучаемость. (ru)
rdfs:label Occam learning (en) Оккамово обучение (ru)
owl:sameAs freebase:Occam learning wikidata:Occam learning dbpedia-ru:Occam learning https://global.dbpedia.org/id/2MPQo
prov:wasDerivedFrom wikipedia-en:Occam_learning?oldid=1085332514&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Occam_learning
is dbo:wikiPageRedirects of dbr:Occam_Learning
is dbo:wikiPageWikiLink of dbr:Probably_approximately_correct_learning dbr:Ockham dbr:Occam_Learning dbr:Computational_learning_theory dbr:Outline_of_machine_learning
is foaf:primaryTopic of wikipedia-en:Occam_learning