In der Mathematik sind quaternionische Darstellungen ein Konzept der Darstellungstheorie, das unter anderem in der Spingeometrie Anwendung findet. (de)
In mathematical field of representation theory, a quaternionic representation is a representation on a complex vector space V with an invariant quaternionic structure, i.e., an antilinear equivariant map which satisfies Together with the imaginary unit i and the antilinear map k := ij, j equips V with the structure of a quaternionic vector space (i.e., V becomes a module over the division algebra of quaternions). From this point of view, quaternionic representation of a group G is a group homomorphism φ: G → GL(V, H), the group of invertible quaternion-linear transformations of V. In particular, a quaternionic matrix representation of g assigns a square matrix of quaternions ρ(g) to each element g of G such that ρ(e) is the identity matrix and Quaternionic representations of associative and Lie algebras can be defined in a similar way. (en)
군 표현론에서, 사원수 표현(四元數表現, 영어: quaternionic representation은 사원수 벡터 공간 위의 군의 표현이다. (ko)
No matemático campo da teoria da representação uma representação quaterniônica é uma representação sobre um espaço vetorial complexo V com uma invariante, i.e., um o qual satisfaz (pt)
In der Mathematik sind quaternionische Darstellungen ein Konzept der Darstellungstheorie, das unter anderem in der Spingeometrie Anwendung findet. (de)
군 표현론에서, 사원수 표현(四元數表現, 영어: quaternionic representation은 사원수 벡터 공간 위의 군의 표현이다. (ko)
No matemático campo da teoria da representação uma representação quaterniônica é uma representação sobre um espaço vetorial complexo V com uma invariante, i.e., um o qual satisfaz (pt)
In mathematical field of representation theory, a quaternionic representation is a representation on a complex vector space V with an invariant quaternionic structure, i.e., an antilinear equivariant map which satisfies Quaternionic representations of associative and Lie algebras can be defined in a similar way. (en)