Rosati involution (original) (raw)
Inom matematiken är en Rosatiinvolution, uppkallad efter , en involution på den rationella endomorfiringen av en abelsk varietet inducerad av en polarisering.
Property | Value |
---|---|
dbo:abstract | In mathematics, a Rosati involution, named after Carlo Rosati, is an involution of the rational endomorphism ring of an abelian variety induced by a polarization. Let be an abelian variety, let be the dual abelian variety, and for , let be the translation-by- map, . Then each divisor on defines a map via . The map is a polarization if is ample. The Rosati involution of relative to the polarization sends a map to the map , where is the dual map induced by the action of on . Let denote the Néron–Severi group of . The polarization also induces an inclusion via . The image of is equal to , i.e., the set of endomorphisms fixed by the Rosati involution. The operation then gives the structure of a formally real Jordan algebra. (en) Inom matematiken är en Rosatiinvolution, uppkallad efter , en involution på den rationella endomorfiringen av en abelsk varietet inducerad av en polarisering. (sv) |
dbo:wikiPageExternalLink | https://zenodo.org/record/2226998 |
dbo:wikiPageID | 34645248 (xsd:integer) |
dbo:wikiPageLength | 2417 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1074581205 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Endomorphism_ring dbr:Jordan_algebra dbr:Néron–Severi_group dbr:Mathematics dbr:Dual_abelian_variety dbr:American_Mathematical_Society dbr:Abelian_variety dbc:Algebraic_geometry dbr:Carlo_Rosati dbr:Ample_divisor |
dbp:wikiPageUsesTemplate | dbt:Citation |
dct:subject | dbc:Algebraic_geometry |
rdfs:comment | Inom matematiken är en Rosatiinvolution, uppkallad efter , en involution på den rationella endomorfiringen av en abelsk varietet inducerad av en polarisering. (sv) In mathematics, a Rosati involution, named after Carlo Rosati, is an involution of the rational endomorphism ring of an abelian variety induced by a polarization. Let be an abelian variety, let be the dual abelian variety, and for , let be the translation-by- map, . Then each divisor on defines a map via . The map is a polarization if is ample. The Rosati involution of relative to the polarization sends a map to the map , where is the dual map induced by the action of on . (en) |
rdfs:label | Rosati involution (en) Rosatiinvolution (sv) |
owl:sameAs | freebase:Rosati involution wikidata:Rosati involution dbpedia-sv:Rosati involution https://global.dbpedia.org/id/4uxig |
prov:wasDerivedFrom | wikipedia-en:Rosati_involution?oldid=1074581205&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Rosati_involution |
is dbo:wikiPageDisambiguates of | dbr:Rosati |
is dbo:wikiPageWikiLink of | dbr:*-algebra dbr:Complex_multiplication_of_abelian_varieties dbr:Abelian_variety dbr:Carlo_Rosati dbr:Rosati |
is foaf:primaryTopic of | wikipedia-en:Rosati_involution |