Schaefer's dichotomy theorem (original) (raw)

About DBpedia

In computational complexity theory, a branch of computer science, Schaefer's dichotomy theorem states necessary and sufficient conditions under which a finite set S of relations over the Boolean domain yields polynomial-time or NP-complete problems when the relations of S are used to constrain some of the propositional variables.It is called a dichotomy theorem because the complexity of the problem defined by S is either in P or NP-complete as opposed to one of the classes of intermediate complexity that is known to exist (assuming P ≠ NP) by Ladner's theorem.

Property Value
dbo:abstract In computational complexity theory, a branch of computer science, Schaefer's dichotomy theorem states necessary and sufficient conditions under which a finite set S of relations over the Boolean domain yields polynomial-time or NP-complete problems when the relations of S are used to constrain some of the propositional variables.It is called a dichotomy theorem because the complexity of the problem defined by S is either in P or NP-complete as opposed to one of the classes of intermediate complexity that is known to exist (assuming P ≠ NP) by Ladner's theorem. Special cases of Schaefer's dichotomy theorem include the NP-completeness of SAT (the Boolean satisfiability problem) and its two popular variants 1-in-3 SAT and not-all-equal 3SAT (often denoted by NAE-3SAT). In fact, for these two variants of SAT, Schaefer's dichotomy theorem shows that their monotone versions (where negations of variables are not allowed) are also NP-complete. (en) Em teoria da complexidade computacional, um ramo da Ciência da Computação, o teorema da dicotomia de Schaefer estabelece as condições necessárias e suficientes sob as quais um conjunto finito S de relações sobre o domínio Booleano produza problemas de tempo polinomial ouNP-completo quando as relações de S são usadas para restringir algumas das variáveis proposicionais. É chamado de teorema da dicotomia porque a complexidade do problema definido por S será P ou NP-completo em oposição a alguma das classes de complexidade NP-Intermediário que é sabida existir (assumindo P ≠ NP) pelo teorema de . Casos especias do teorema da dicotomia de Schaefer incluem a NP-completude de SAT (o problema da satisfatibilidade Booleana) e suas duas variantes populares 1-in-3 SAT e NAE-3SAT (Not-All-Equal 3SAT). Na verdade, para estas duas variantes de SAT, o teorema da dicotomia de Schaefer nos mostra suas versões monótonas (onde as negações das variáveis não são permitidas) também são NP-completas. (pt)
dbo:wikiPageID 4638322 (xsd:integer)
dbo:wikiPageLength 10858 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1106157370 (xsd:integer)
dbo:wikiPageWikiLink dbr:Decision_problem dbr:Universal_algebra dbr:Not-all-equal_3-satisfiability dbr:One-in-three_3SAT dbr:Galois_connection dbr:NP-complete dbr:Constraint_satisfaction_problem dbr:L_(complexity) dbc:Theorems_in_computational_complexity_theory dbr:Computational_complexity_theory dbr:Computer_science dbr:Horn_clause dbr:P_(complexity) dbr:Max/min_CSP/Ones_classification_theorems dbr:P-complete dbr:Reduction_(complexity) dbc:Constraint_programming dbr:Boolean_domain dbr:Boolean_satisfiability_problem dbr:Propositional_variable dbr:NP-intermediate dbr:Sharp-P-complete dbr:NL-complete dbr:P_versus_NP_problem dbr:Ladner's_theorem
dbp:wikiPageUsesTemplate dbt:Reflist dbt:Short_description
dct:subject dbc:Theorems_in_computational_complexity_theory dbc:Constraint_programming
rdf:type yago:WikicatTheoremsInComputationalComplexityTheory yago:Abstraction100002137 yago:Communication100033020 yago:Message106598915 yago:Proposition106750804 yago:Statement106722453 yago:Theorem106752293
rdfs:comment In computational complexity theory, a branch of computer science, Schaefer's dichotomy theorem states necessary and sufficient conditions under which a finite set S of relations over the Boolean domain yields polynomial-time or NP-complete problems when the relations of S are used to constrain some of the propositional variables.It is called a dichotomy theorem because the complexity of the problem defined by S is either in P or NP-complete as opposed to one of the classes of intermediate complexity that is known to exist (assuming P ≠ NP) by Ladner's theorem. (en) Em teoria da complexidade computacional, um ramo da Ciência da Computação, o teorema da dicotomia de Schaefer estabelece as condições necessárias e suficientes sob as quais um conjunto finito S de relações sobre o domínio Booleano produza problemas de tempo polinomial ouNP-completo quando as relações de S são usadas para restringir algumas das variáveis proposicionais. (pt)
rdfs:label Schaefer's dichotomy theorem (en) Teorema da Dicotomia de Schaefer (pt)
owl:sameAs freebase:Schaefer's dichotomy theorem yago-res:Schaefer's dichotomy theorem wikidata:Schaefer's dichotomy theorem dbpedia-pt:Schaefer's dichotomy theorem https://global.dbpedia.org/id/4utGJ
prov:wasDerivedFrom wikipedia-en:Schaefer's_dichotomy_theorem?oldid=1106157370&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Schaefer's_dichotomy_theorem
is dbo:knownFor of dbr:Thomas_Jerome_Schaefer
is dbo:wikiPageWikiLink of dbr:Not-all-equal_3-satisfiability dbr:Constraint_satisfaction_problem dbr:Complexity_of_constraint_satisfaction dbr:Max/min_CSP/Ones_classification_theorems dbr:Boolean_satisfiability_problem dbr:List_of_theorems dbr:Thomas_Jerome_Schaefer dbr:NP-intermediate dbr:Schaefer's_theorem
is dbp:knownFor of dbr:Thomas_Jerome_Schaefer
is foaf:primaryTopic of wikipedia-en:Schaefer's_dichotomy_theorem