Secondary cohomology operation (original) (raw)
In mathematics, a secondary cohomology operation is a functorial correspondence between cohomology groups. More precisely, it is a natural transformation from the kernel of some primary cohomology operation to the cokernel of another primary operation. They were introduced by J. Frank Adams in his solution to the Hopf invariant problem. Similarly one can define tertiary cohomology operations from the kernel to the cokernel of secondary operations, and continue like this to define higher cohomology operations, as in .