Smooth algebra (original) (raw)

In algebra, a commutative k-algebra A is said to be 0-smooth if it satisfies the following lifting property: given a k-algebra C, an ideal N of C whose square is zero and a k-algebra map , there exists a k-algebra map such that u is v followed by the canonical map. If there exists at most one such lifting v, then A is said to be 0-unramified (or 0-neat). A is said to be 0-étale if it is 0-smooth and 0-unramified. The notion of 0-smoothness is also called formal smoothness. A finitely generated k-algebra A is 0-smooth over k if and only if Spec A is a smooth scheme over k.