Smooth functor (original) (raw)

About DBpedia

Ein glatter Funktor, oder auch -Funktor, ist eine Art von Funktor (im Sinne der Kategorientheorie), der im mathematischen Teilgebiet der Differentialtopologie Anwendung findet.

Property Value
dbo:abstract Ein glatter Funktor, oder auch -Funktor, ist eine Art von Funktor (im Sinne der Kategorientheorie), der im mathematischen Teilgebiet der Differentialtopologie Anwendung findet. (de) In differential topology, a branch of mathematics, a smooth functor is a type of functor defined on finite-dimensional real vector spaces. Intuitively, a smooth functor is smooth in the sense that it sends smoothly parameterized families of vector spaces to smoothly parameterized families of vector spaces. Smooth functors may therefore be uniquely extended to functors defined on vector bundles. Let Vect be the category of finite-dimensional real vector spaces whose morphisms consist of all linear mappings, and let F be a covariant functor that maps Vect to itself. For vector spaces T, U ∈ Vect, the functor F induces a mapping where Hom is notation for Hom functor. If this map is smooth as a map of infinitely differentiable manifolds then F is said to be a smooth functor. Common smooth functors include, for some vector space W: F(W) = ⊗nW, the nth iterated tensor product;F(W) = Λn(W), the nth exterior power; andF(W) = Symn(W), the nth symmetric power. Smooth functors are significant because any smooth functor can be applied fiberwise to a differentiable vector bundle on a manifold. Smoothness of the functor is the condition required to ensure that the patching data for the bundle are smooth as mappings of manifolds. For instance, because the nth exterior power of a vector space defines a smooth functor, the nth exterior power of a smooth vector bundle is also a smooth vector bundle. Although there are established methods for proving smoothness of standard constructions on finite-dimensional vector bundles, smooth functors can be generalized to categories of topological vector spaces and vector bundles on infinite-dimensional Fréchet manifolds. (en)
dbo:wikiPageID 23613378 (xsd:integer)
dbo:wikiPageLength 3343 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1118104410 (xsd:integer)
dbo:wikiPageWikiLink dbr:Vector_space dbr:Smooth_infinitesimal_analysis dbr:Linear_mapping dbr:Smooth_function dbr:Fréchet_manifold dbr:Functor dbr:Topological_vector_space dbr:Covariant_functor dbr:Exterior_power dbr:Differential_topology dbc:Functors dbr:Tensor_product dbr:Symmetric_power dbr:Hom_functor dbr:Differentiable_manifold dbr:Infinitely_differentiable dbr:Category_(mathematics) dbr:Real_number dbr:Vector_bundle dbr:Synthetic_differential_geometry
dbp:wikiPageUsesTemplate dbt:Citation dbt:Functors
dcterms:subject dbc:Functors
rdfs:comment Ein glatter Funktor, oder auch -Funktor, ist eine Art von Funktor (im Sinne der Kategorientheorie), der im mathematischen Teilgebiet der Differentialtopologie Anwendung findet. (de) In differential topology, a branch of mathematics, a smooth functor is a type of functor defined on finite-dimensional real vector spaces. Intuitively, a smooth functor is smooth in the sense that it sends smoothly parameterized families of vector spaces to smoothly parameterized families of vector spaces. Smooth functors may therefore be uniquely extended to functors defined on vector bundles. where Hom is notation for Hom functor. If this map is smooth as a map of infinitely differentiable manifolds then F is said to be a smooth functor. (en)
rdfs:label Glatter Funktor (de) Smooth functor (en)
owl:sameAs freebase:Smooth functor wikidata:Smooth functor dbpedia-de:Smooth functor https://global.dbpedia.org/id/4uK28
prov:wasDerivedFrom wikipedia-en:Smooth_functor?oldid=1118104410&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Smooth_functor
is dbo:wikiPageWikiLink of dbr:Timeline_of_category_theory_and_related_mathematics dbr:Vector_bundle
is foaf:primaryTopic of wikipedia-en:Smooth_functor