Valiant–Vazirani theorem (original) (raw)

About DBpedia

The Valiant–Vazirani theorem is a theorem in computational complexity theory stating that if there is a polynomial time algorithm for Unambiguous-SAT, then NP = RP. It was proven by Leslie Valiant and Vijay Vazirani in their paper titled NP is as easy as detecting unique solutions published in 1986. The proof is based on the Mulmuley–Vazirani–Vazirani isolation lemma, which was subsequently used for a number of important applications in theoretical computer science.

Property Value
dbo:abstract The Valiant–Vazirani theorem is a theorem in computational complexity theory stating that if there is a polynomial time algorithm for Unambiguous-SAT, then NP = RP. It was proven by Leslie Valiant and Vijay Vazirani in their paper titled NP is as easy as detecting unique solutions published in 1986. The proof is based on the Mulmuley–Vazirani–Vazirani isolation lemma, which was subsequently used for a number of important applications in theoretical computer science. The Valiant–Vazirani theorem implies that the Boolean satisfiability problem, which is NP-complete, remains a computationally hard problem even if the input instances are promised to have at most one satisfying assignment. (en) O Teorema de Valiant–Vazirani é um teorema na teoria da complexidade computacional. Foi provado por Leslie Valiant e Vijay Vazirani em um artigo intitulado "NP is as easy as detecting unique solutions", publicado em 1986.O teorema afirma que, se existe um algoritmo de tempo polinomial para SAT-não-ambíguo, então NP=RP.A prova é baseada no lema do isolamento de Mulmuley–Vazirani–Vazirani , que, posteriormente, foi utilizado por uma grande quantidade de aplicações na teoria da ciência da computação. O teorema de Valiant–Vazirani implica que o Problema da satisfatibilidade booleana, que é NP-completo, continua a ser um problema computacionalmente difícil mesmo se as instâncias de entrada são forçadas a ter no máximo uma atribuição satisfeitora. (pt)
dbo:wikiPageID 3003434 (xsd:integer)
dbo:wikiPageLength 4285 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1123699119 (xsd:integer)
dbo:wikiPageWikiLink dbr:NP_(complexity) dbr:Nondeterministic_Turing_machine dbr:NP-complete dbc:Structural_complexity_theory dbr:Leslie_Valiant dbc:Theorems_in_computational_complexity_theory dbr:Computational_complexity_theory dbr:P_(complexity) dbr:Theoretical_computer_science dbr:Promise_problem dbr:Isolation_lemma dbr:Boolean_satisfiability_problem dbr:RP_(complexity) dbr:UP_(complexity) dbr:Vijay_Vazirani
dbp:wikiPageUsesTemplate dbt:Reflist dbt:Short_description
dcterms:subject dbc:Structural_complexity_theory dbc:Theorems_in_computational_complexity_theory
gold:hypernym dbr:Theorem
rdf:type yago:WikicatTheoremsInComputationalComplexityTheory yago:Abstraction100002137 yago:Communication100033020 yago:Message106598915 yago:Proposition106750804 yago:Statement106722453 yago:Theorem106752293
rdfs:comment The Valiant–Vazirani theorem is a theorem in computational complexity theory stating that if there is a polynomial time algorithm for Unambiguous-SAT, then NP = RP. It was proven by Leslie Valiant and Vijay Vazirani in their paper titled NP is as easy as detecting unique solutions published in 1986. The proof is based on the Mulmuley–Vazirani–Vazirani isolation lemma, which was subsequently used for a number of important applications in theoretical computer science. (en) O Teorema de Valiant–Vazirani é um teorema na teoria da complexidade computacional. Foi provado por Leslie Valiant e Vijay Vazirani em um artigo intitulado "NP is as easy as detecting unique solutions", publicado em 1986.O teorema afirma que, se existe um algoritmo de tempo polinomial para SAT-não-ambíguo, então NP=RP.A prova é baseada no lema do isolamento de Mulmuley–Vazirani–Vazirani , que, posteriormente, foi utilizado por uma grande quantidade de aplicações na teoria da ciência da computação. (pt)
rdfs:label Teorema de Valiant-Vazirani (pt) Valiant–Vazirani theorem (en)
owl:sameAs freebase:Valiant–Vazirani theorem wikidata:Valiant–Vazirani theorem dbpedia-pt:Valiant–Vazirani theorem https://global.dbpedia.org/id/4x2fn
prov:wasDerivedFrom wikipedia-en:Valiant–Vazirani_theorem?oldid=1123699119&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Valiant–Vazirani_theorem
is dbo:knownFor of dbr:Leslie_Valiant__Leslie_Valiant__1 dbr:Vijay_Vazirani
is dbo:wikiPageRedirects of dbr:Valiant-Vazirani_Theorem dbr:Valiant-Vazirani_theorem
is dbo:wikiPageWikiLink of dbr:Leslie_Valiant dbr:Isolation_lemma dbr:Toda's_theorem dbr:UP_(complexity) dbr:Vijay_Vazirani dbr:List_of_theorems dbr:NP-completeness dbr:Structural_complexity_theory dbr:Valiant-Vazirani_Theorem dbr:Valiant-Vazirani_theorem
is dbp:knownFor of dbr:Vijay_Vazirani
is foaf:primaryTopic of wikipedia-en:Valiant–Vazirani_theorem