Veblen–Young theorem (original) (raw)
In mathematics, the Veblen–Young theorem, proved by Oswald Veblen and John Wesley Young , states that a projective space of dimension at least 3 can be constructed as the projective space associated to a vector space over a division ring. Non-Desarguesian planes give examples of 2-dimensional projective spaces that do not arise from vector spaces over division rings, showing that the restriction to dimension at least 3 is necessary. Jacques Tits generalized the Veblen–Young theorem to Tits buildings, showing that those of rank at least 3 arise from algebraic groups.