Wigner D-matrix (original) (raw)
Die Wigner D-Matrix ist eine unitäre Matrix in einer irreduziblen Darstellung der dreidimensionalen Rotationsgruppe SO(3) bzw. der Gruppe SU(2). Sie wurde 1927 durch Eugene Wigner eingeführt. Das D steht für Darstellung. Die Wigner D-Matrix hat Anwendung in der Quantenmechanik der Drehgruppe, so ist die komplex-konjugierte D-Matrix Eigenfunktion des Hamiltonoperators des sphärischen und symmetrischen starren Rotators. Außerdem beschreibt die D-Matrix die Transformation von Spin-Zuständen bei Drehungen.