Wiles's proof of Fermat's Last Theorem is a proof by British mathematician Andrew Wiles of a special case of the modularity theorem for elliptic curves. Together with Ribet's theorem, it provides a proof for Fermat's Last Theorem. Both Fermat's Last Theorem and the modularity theorem were almost universally considered inaccessible to prove by contemporaneous mathematicians, meaning that they were believed to be impossible to prove using current knowledge. Wiles first announced his proof on 23 June 1993 at a lecture in Cambridge entitled "Modular Forms, Elliptic Curves and Galois Representations". However, in September 1993 the proof was found to contain an error. One year later on 19 September 1994, in what he would call "the most important moment of [his] working life", Wiles stumbled upon a revelation that allowed him to correct the proof to the satisfaction of the mathematical community. The corrected proof was published in 1995. Wiles's proof uses many techniques from algebraic geometry and number theory, and has many ramifications in these branches of mathematics. It also uses standard constructions of modern algebraic geometry, such as the category of schemes and Iwasawa theory, and other 20th-century techniques which were not available to Fermat. The proof's method of identification of a deformation ring with a Hecke algebra (now referred to as an R=T theorem) to prove modularity lifting theorems has been an influential development in algebraic number theory. Together, the two papers which contain the proof are 129 pages long, and consumed over seven years of Wiles's research time. John Coates described the proof as one of the highest achievements of number theory, and John Conway called it "the proof of the [20th] century." Wiles's path to proving Fermat's Last Theorem, by way of proving the modularity theorem for the special case of semistable elliptic curves, established powerful modularity lifting techniques and opened up entire new approaches to numerous other problems. For proving Fermat's Last Theorem, he was knighted, and received other honours such as the 2016 Abel Prize. When announcing that Wiles had won the Abel Prize, the Norwegian Academy of Science and Letters described his achievement as a "stunning proof". (en)
ワイルズによるフェルマーの最終定理の証明(ワイルズによるフェルマーのさいしゅうていりのしょうめい)は、イギリスの数学者アンドリュー・ワイルズによる楕円曲線に関するモジュラリティ定理の特殊な場合の数学的証明である。と組み合わせることでフェルマーの最終定理の証明を与える。フェルマーの最終定理とモジュラリティ定理は双方ともに当時の知識だけで証明することは現実的にほぼ不可能だと考えられており、同時代の数学者の多くは証明することは難しいと考えていた。 ワイルズは1993年6月23日、「モジュラー形式、楕円曲線およびガロワ表現(Modular Forms, Elliptic Curves and Galois Representations.)」と題されたケンブリッジ大学の彼の講演にて最初に証明を発表した。しかし、1993年9月、この証明は誤りが含まれていることが判明した。1年後、1994年9月19日、ワイルズが 「(自身の)今までの職務においてもっとも重要な瞬間」と呼ぶアイデアを得た。彼はこれに関して「信じられないほど美しく…とてもシンプルでかつエレガント」なアイデアと語っており、これによって証明を数学者のコミュニティが受容する水準にまで正すことができた。この正しい証明は1995年に発表された。 ワイルズの証明は代数幾何学・数論のテクニックを多数使用しており、これらの数学分野の派生を多く含んでいる。また、彼の証明はスキームの圏や岩澤理論などのフェルマーが知りえなかった20世紀以降のテクニックを含む現代代数幾何学の一般的な構成を使用している。 証明を含む2本の論文は129ページの長さであり、証明を構成するのにワイルズは7年を費やした。ジョン・コーツはワイルズの証明を数論の最高の成果の1つであると述べ、ジョン・ホートン・コンウェイはワイルズの証明は20世紀を代表する証明だと述べた。ワイルズのフェルマーの最終定理証明への戦略は、の特殊な場合に関するモジュラリティ定理を証明することであり、強力なモジュラリティのというテクニックを確立し、他の数々の問題に対しても全く新しいアプローチの道を開いた。フェルマーの最終定理の解決に対して、ワイルズはナイトの称号を与えられたほか、2016年のアーベル賞等の名誉が与えられた。ワイルズがアーベル賞を受賞することが発表されたとき、en:Norwegian Academy of Science and Lettersはワイルズの業績を「素晴らしい証明("Stunning proof")」と表現した。 (ja)
O Último Teorema de Fermat afirma que não existe nenhum conjunto de inteiros positivos x, y, z e n com n maior que 2 que satisfaça Se n é um número inteiro maior que 2, então não existem números inteiros positivos x, y e z, que satisfaçam a igualdade: — Pierre de Fermat, no ano de 1637 Durante os Séculos XVIII, XIX e início do Século XX, vários matemáticos brilhantes tentaram solucionar o Último Teorema de Fermat, embora esses esforços tenham terminado em fracasso, eles levaram à criação do maravilhoso arsenal de ferramentas e técnicas matemáticas que foram vitais para as últimas tentativas de se conseguir uma demonstração. Foram aproximadamente 358 anos de tentativas de solucionar ou provar a incoerência do problema. Dentre os grandes matemáticos que tentaram solucionar o problema ao longo dos tempos, podemos mencionar: Leonhard Euler, Dirichlet (1828), Legendre (1830), Gabriel Lamé (1839), Sophie Germain, Ernst Kummer e mais recentemente, (1980). Em 1995, 358 anos após sua formulação, a Prova matemática foi finalmente encontrada pelo matemático britânico Andrew Wiles - com a ajuda de Richard Taylor). Por conta disso, o Último Teorema de Fermat passou a ser conhecido como o mais famoso e duradouro teorema matemático de seu tempo. Por ter sido provado matematicamente por Andrew Wiles, este teorema passou a ser chamado também por Teorema de Fermat-Wiles. (pt)
Wiles's proof of Fermat's Last Theorem is a proof by British mathematician Andrew Wiles of a special case of the modularity theorem for elliptic curves. Together with Ribet's theorem, it provides a proof for Fermat's Last Theorem. Both Fermat's Last Theorem and the modularity theorem were almost universally considered inaccessible to prove by contemporaneous mathematicians, meaning that they were believed to be impossible to prove using current knowledge. (en)
ワイルズによるフェルマーの最終定理の証明(ワイルズによるフェルマーのさいしゅうていりのしょうめい)は、イギリスの数学者アンドリュー・ワイルズによる楕円曲線に関するモジュラリティ定理の特殊な場合の数学的証明である。と組み合わせることでフェルマーの最終定理の証明を与える。フェルマーの最終定理とモジュラリティ定理は双方ともに当時の知識だけで証明することは現実的にほぼ不可能だと考えられており、同時代の数学者の多くは証明することは難しいと考えていた。 ワイルズは1993年6月23日、「モジュラー形式、楕円曲線およびガロワ表現(Modular Forms, Elliptic Curves and Galois Representations.)」と題されたケンブリッジ大学の彼の講演にて最初に証明を発表した。しかし、1993年9月、この証明は誤りが含まれていることが判明した。1年後、1994年9月19日、ワイルズが 「(自身の)今までの職務においてもっとも重要な瞬間」と呼ぶアイデアを得た。彼はこれに関して「信じられないほど美しく…とてもシンプルでかつエレガント」なアイデアと語っており、これによって証明を数学者のコミュニティが受容する水準にまで正すことができた。この正しい証明は1995年に発表された。 (ja)
O Último Teorema de Fermat afirma que não existe nenhum conjunto de inteiros positivos x, y, z e n com n maior que 2 que satisfaça Se n é um número inteiro maior que 2, então não existem números inteiros positivos x, y e z, que satisfaçam a igualdade: — Pierre de Fermat, no ano de 1637 (pt)