Shear-dependence of endothelial functions (original) (raw)
References
Alevriadou, B. R., Eskin, S. G., McIntire, L. V., and Schilling, W. P., Effect of shear stress on86Rb+ efflux from calf pulmonary artery endothelial cells. Ann. Biomed. Eng.21 (1993) 1–7. ArticleCASPubMed Google Scholar
Alevriadou, B. R., Moake, J. L., Turner, N. A., Ruggeri, Z. M., Folie, B. J., Phillips, M. D., Schreiber, A. B., Hrinda, M. E., and McIntire, L. V., Real-time analysis of shear-dependent thrombus formation and its blockade by inhibitors of von Willebrand factor binding to platelets. Blood_81_ (1993) 1263–1276. ArticleCASPubMed Google Scholar
Ando, J., Komatsuda, T., Ischikawa, C., and Kamiya, A., Fluid shear stress enhanced DNA synthesis in cultured endothelial cells during repair of mechanical denudation. Biorheology_27_ (1990) 675–684. ArticleCASPubMed Google Scholar
Asakura, T., and Karino, T., Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circulation Res.66 (1990) 1045–1066. ArticleCASPubMed Google Scholar
Badimon, J. J., Fuster, V., Chesebro, J. H., and Badimon, L., Coronary atherosclerosis. A multifactorial disease. Circulation_87_ (suppl. II) (1993) 3–16. Google Scholar
Barabino, G. A., McIntire, L. V., Eskin, S. G., Sears, D. A., and Udden, M., Endothelial cell interactions with sickle cell, sickle trait, mechanically injured, and normal erythrocytes under controlled flow. Blood_70_ (1987) 152–157. ArticleCASPubMed Google Scholar
Bastida, E., Almirall, L., and Ordinas, A., Platelet and shear rate promote tumor cell adhesion to human endothelial extracellular matrix-Absence of a role for platelet cyclooxygenase. Thromb. Haemostas.61 (1989) 485–489. ArticleCAS Google Scholar
Baumgartner, H. R., The role of blood flow in platelet adhesion, fibrin deposition, and formation of mural thrombi. Microvasc. Res.5 (1973) 167–179. ArticleCASPubMed Google Scholar
Baumgartner, H. R., and Sakariassen, K. S., Factors controlling thrombus formation on arterial lesions. Ann. NY Acad. Sci.454 (1973) 167–179. Google Scholar
Bhagyalakshmi, A., Berthiaume, F., Reich, K. M., and Frangos, J. A., Fluid shear stress stimulates membrane phospholipid metabolism in cultured human endothelial cells. J. vasc. Res.29 (1992) 443–449. ArticleCASPubMed Google Scholar
Buga, G. M., Gold, M. E., Fukuto, J. M., and Ignarro, L. J., Shear stress-induced release of nitric oxide from endothelial cells grown on beads. Hypertension_17_ (1991) 187–193. ArticleCASPubMed Google Scholar
Carosi, J. A., Eskin, S. G., and McIntire, L. V., Cyclical strain effects on production of vasoactive materials in cultured endothelial cells. J. Cell Physiol.151 (1992) 29–36. ArticleCASPubMed Google Scholar
Chien, S., Jan, K. M., and Simchon, S., Effects of blood viscosity on renin secretion. Biorheology_27_ (1990) 509–517. Article Google Scholar
Chow, T. W., Hellums, J. D., Moake, J. L., and Kroll, M. H., Induced von Willebrand factor binding to platelet glycoprotein Ib initiates calcium influx associated with aggregation. Blood_80_ (1992) 113–120. ArticleCASPubMed Google Scholar
Christ, G., Steiffert, D., Hufnagl, P., Gessl, A., Woijta, J., and Binder, B. R., Type 1 plasminogen activator inhibitor synthesis of endothelial cells is downregulated by smooth muscle cells. Blood_81_ (1993) 1277–1283. ArticleCASPubMed Google Scholar
Davies, P. F., Dewey, C. F. Jr., Bussolari, S. R., Gordon, E. J., and Gimbrone, M. A. Jr., Influence of hemodynamic forces on vascular endothelial function. In vitro studies of shear stress and pinocytosis in bovine aortic cells. J. clin. Invest.73 (1984) 1121–1129. ArticleCASPubMedPubMed Central Google Scholar
Davies, P. F., Remuzzi, A., Gordon, E. J., Dewey, C. F. Jr, and Gimbrone, M. A. Jr, Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc. natl Acad. Sci. USA_83_ (1986) 2114–2117. ArticleCASPubMedPubMed Central Google Scholar
DeForrest, J. M., and Hollis, T. M., Shear stress and aortic histamine synthesis. Am. J. Physiol.,234 (Heart Circ. Physiol 3) (1978) H701-H705. CASPubMed Google Scholar
Dewey, C. F. Jr, Bussolari, S. R., Gimbrone, M. A. Jr, and Davies, P. F., The dynamic response of vascular endothelial cells to fluid shear stress. ASME J. Biomech. Eng.103 (1981) 177–185. Article Google Scholar
Diamond, S. L., Eskin, S. G., and McIntire, L. V., Fluid flow stimulates tissue plasminogen activator secretion by cultured human endothelial cells. Science_243_ (1989) 1483–1485. ArticleCASPubMed Google Scholar
Diamond, S. L., Sharefkin, J. B., Dieffenbach, C., Frasier-Scott, K., McIntire, L. V., and Eskin, S. G., Tissue plasminogen activator messenger RNA levels increase in cultured human endothelial cells exposed to laminar shear stress. J. Cell Physiol.143 (1990) 364–371. ArticleCASPubMed Google Scholar
Duguid, J. B., and Robertson, W. B., Mechanical factors in atherosclerosis. Lancet_I_ (1957) 1205–1209. Article Google Scholar
Dull, R. O., and Davies, P. F., Flow modulation of agonist (ATP)-response (Ca2+) coupling in vascular endothelial cells. Am. J. Physiol. (Heart Circ Physiol)261 (1991) H149-H154. ArticleCAS Google Scholar
Esmon, C. T., The regulation of natural anticoagulant pathways. Science_235_ (1987) 1348–1352. ArticleCASPubMed Google Scholar
Frangos, J. A., Eskin, S. G., McIntire, L. V., and Ives, C. L., Flow effects on prostacyclin production by cultured human endothelial cells. Science_227_ (1985) 1477–1479. ArticleCASPubMed Google Scholar
Franke, R. P., Gräfe, M., Schnittler, H., Seiffge, D., and Mittermayer, C., Induction of human vascular endothelial stress fibers by fluid shear stress. Nature_307_ (1984) 648–9. ArticleCASPubMed Google Scholar
Goto, S., Ikeda, Y., Murata, M., Handa, M., Takahashi, E., Yoshioka, A., Fujimura, Y., Fukuyama, M., Handa, S., and Ogawa, S., Epinephrine augments von Willebrand factordependent shear-induced platelet aggregation. Circulation_86_ (1992) 1859–1863. ArticleCASPubMed Google Scholar
Grabowski, E. F., Jaffe, E. A., and Weksler, B. B., Prostacyclin production by cultured endothelial cell monolayers exposed to step increases in shear stress. J. Lab. clin. Med.105 (1985) 36–43. CASPubMed Google Scholar
Gupte, A., and Frangos, J. A., Effects of flow on the synthesis and release of fibronectin by endothelial cells. In Vitro Cell Dev. Biol.26 (1990) 57–60. ArticleCASPubMed Google Scholar
Hsieh, H. J., Li, N. Q., and Frangos, J. A., Shear stress increases endothelial platelet-derived growth factor mRNA levels. Am. J. Physiol_260_ (Heart Circ Physiol 29) (1991) H642-H646. CASPubMed Google Scholar
Hsieh, H. J., Li, N. Q., and Frangos, J. A., Shear-induced platelet-derived growth factor gene expression in human endothelial cells is mediated by protein kinase C. J. Cell. Physiol.150 (1992) 552–558. ArticleCASPubMed Google Scholar
Inauen, W., Baumgartner, H. R., Bombeli, T., Haeberli, A., and Straub, P. W., Dose- and shear-dependent effects of heparin on thrombogenesis induced by rabbit aorta subendothelium exposed to flowing human blood. Arteriosclerosis_10_ (1990) 607–615. ArticleCASPubMed Google Scholar
Jo, H., Dull, R. O., Hollis, T. M., and Tarbell, J. M., Endothelial albumin permeability is shear dependent, time dependent, and reversible. Am. J. Physiol.260 (Heart Circ Physiol 29) (1991) H1992-H1996. CASPubMed Google Scholar
Koller, A., and Kaley, G., Endothelial regulation of wall shear stress and blood flow in skeletal muscle microcirculation. Am. J. Physiol.260 (Heart Circ Physiol 29) (1991) H862-H868. CASPubMed Google Scholar
Kraiss, L. W., Kirkman, T. R., Kohler, T. R., Zierler, B., and Clowes, A. W., Shear stress regulates smooth muscle proliferation and neointimal thickening in porous polytetrafluoroethylene grafts. Arterioscler. Thromb.11 (1991) 1844–1852. ArticleCASPubMed Google Scholar
Ku, D. N., Giddens, D. P., Zarins, C. K., and Glagov, S., Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low and oscillatory shear stress. Arteriosclerosis_5_ (1985) 293–302. ArticleCASPubMed Google Scholar
Kuchan, M. J., and Frangos, J. A., Shear stress regulates endothelin-1 release via protein kinase C and cGMP in cultured endothelial cells. Am. J. Physiol.264 (Heart Circ. Physiol. 33) (1993) H150-H156. CASPubMed Google Scholar
Kuo, L., Davies, M. J., and Chilian, W. M., Endothelium-dependent flow-induced dilation of isolated coronary arterioles. Am. J. Physiol.259 (Heart Circ. Physiol. 28) (1990) H1063-H1070. CASPubMed Google Scholar
Koury, S. T., Bondurant, M. C., Koury, M. J., Localization of erythropoietin synthesizing cells in murine kidney by in situ hybridization. Blood_71_ (1988) 524–527. ArticleCASPubMed Google Scholar
Lamontagne, D., Pohl, U., and Busse, R., Mechanical deformation of vessel wall and shear stress determine the basal release of endothelium-derived relaxing factor in the intact rabbit coronary vascular bed. Circulation Res.70 (1992) 127–130. Article Google Scholar
Langille, B. L., Graham, J. J. K., Kim, D., and Gotlieb, A. I., Dynamics of shear-induced redistribution of F-actin in endothelial cells in vivo. Arterioscler. Thromb.11 (1991) 1814–20. ArticleCASPubMed Google Scholar
Lansman, J. B., Hallam, T. J., and Rink, T. J., Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? Nature_325_ (1987) 811–813. ArticleCASPubMed Google Scholar
Lasky, L. A., Selectins: Interpreters of cell-specific carbohydrate information during inflammation. Science_258_ (1992) 964–969. ArticleCASPubMed Google Scholar
Lawrence, M. B., Smith, C. W., Eskin, S. G., and McIntire, L. V., Effect of venous shear stress on CD18-mediated neutrophil adhesion to cultured endothelium. Blood_75_ (1990) 227–237. ArticleCASPubMed Google Scholar
Lawrence, M. B., and Springer, T. A., Leukocytes roll on a selectin at physiological flow rates: Distinction from and prerequisite for adhesion through integrins. Cell_65_ (1991) 859–873. ArticleCASPubMed Google Scholar
Levenson, J., Devynck, M. A., Pithois-Merli, I., Le Quan Sang K. H., Filitti, V., and Simon, A., Dynamic association between artery shear flow condition and platelet cytosolic free Ca2+ concentration in human hypertension. Clin. Sci.79 (1990) 613–618. ArticleCAS Google Scholar
Levesque, M. J., Liepsch, D., Moravec, S., and Nerem, R. M., Correlation of endothelial cell shape and wall shear stress in a stenosed dog aorta. Arteriosclerosis_6_ (1986) 220–9. ArticleCASPubMed Google Scholar
Ludwig, H., Fritz, E., Kotzmann, H., Höcker, P., Gisslinger, H., and Barnas, U., Erythropoietin treatment of anemia associated with multiple myeloma. N. Engl. J. Med.322 (1990) 1693–1699. ArticleCASPubMed Google Scholar
Malek, A. M., Greene, A. L., and Izumo, S., Regulation of endothelin 1 gene by fluid shear stress is transcriptionally mediated and independent of protein kinase C and cAMP. Proc. natl Acad. Sci. USA_90_ (1993) 5999–6003. ArticleCASPubMedPubMed Central Google Scholar
Malek, A. M., and Izumo, S., Physiological fluid shear stress causes down-regulation of endothelin-1 mRNA in bovine aortic endothelium. Am. J. Physiol.263 (Cell Physiol. 32) (1992) C389-C396. ArticleCASPubMed Google Scholar
Melkumyants, A. M., and Balashow, S. A., Effect of blood viscosity on arterial flow induced dilator response. Cardiovasc. Res.24 (1990) 165–168. ArticleCASPubMed Google Scholar
Mo, M., Eskin, S. G., and Schilling, W. P., Flow-induced changes in Ca2+ signaling of vascular endothelial cells: effect of shear stress and ATP. Am. J. Physiol.260 (Heart Circ. Physiol. 29) (1991) H1698-H1707. CASPubMed Google Scholar
Montenegro, M. R., and Eggen, D. A., Topography of atherosclerosis in the coronary arteries. Lab. Invest.18 (1968) 586–593. CASPubMed Google Scholar
Nabel, E. G., Selwyn, A. P., and Ganz, P., Large coronary arteries in humans are responsive to changing blood flow: An endothelium-dependent mechanism that fails in patients with atherosclerosis. J. Am. Coll. Cardiol.16 (1990) 349–356. ArticleCASPubMed Google Scholar
Nollert, M. U., Panero, N. J., and McIntire, L. V., Regulation of genetic expression in shear stress-stimulated endothelial cells. Ann. NY Acad. Sci.665 (1992) 94–104. ArticleCASPubMed Google Scholar
O'Brian, J. R., Shear-induced platelet aggregation. Lancet_335_ (1990) 711–713. Article Google Scholar
Ohno, M., Gibbons, G. H., Lopez, F., Cooke, J. P., and Dzau, V. J., Shear stress induces transforming growth factor beta 1 (TGF-β1) expression via a flow-activated potassium channel. Clin. Res.40 (1992) 294A. Google Scholar
Olesen, S. P., Clapham, D. E., and Davies, P. F., Hemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature_331_ (1988) 168–170. ArticleCASPubMed Google Scholar
Ookawa, K., Sato, M., and Ohshima, N., Changes in the microstructure of cultured porcine aortic endothelial cells in the early stage after applying a fluid-imposed shear stress. J. Biomechanics_25_ (1992) 1321–1328. ArticleCAS Google Scholar
Penny, W. F., Weinstein, M. J., Salzman, E. W., and Ware, J. A., Correlation of circulating von Willebrand factor levels with cardiovascular hemodynamics. Circulation_83_ (1991) 1630–1636. ArticleCASPubMed Google Scholar
Perry, M. A., and Granger, D. N., Role of CD11/CD18 in shear rate-dependent leukocyte-endothelial cell interactions in cat mesenteric venules. J. clin. Invest.87 (1991) 1798–1804. ArticleCASPubMedPubMed Central Google Scholar
Pohl, U., Bausse, R., Kuon, E., and Bassenge, E., Pulsatile perfusion stimulates the release of endothelial autacoids. J. appl. Cardiol.1 (1986) 215–235. CAS Google Scholar
Pohl, U., Herlan, K., Huang, A., and Bassenge, E., EDRF-mediated shear-induced dilation opposes myogenic vasoconstriction in small rabbit arteries. Am. J. Physiol.261 (Heart Circ. Physiol. 30) (1991) H2016-H2023. CASPubMed Google Scholar
Pohl, U., Holtz, J., Busse, R., and Bassenge, E., Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension_8_ (1986) 37–44. ArticleCASPubMed Google Scholar
Predel, H.-G., Yang, Z., von Segesser, L., Turina, M., Bühler, F. R., and Lüscher, T. F., Implications of pulsatile stretch on growth of saphenous vein and mammary artery smooth muscle. Lancet_340_ (1992) 878–879. ArticleCASPubMed Google Scholar
Reich, K. M., Gay, C. V., and Frangos, J. A., Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production. J. Cell. Physiol.143 (1990) 100–104. ArticleCASPubMed Google Scholar
Ross, R., Raines, E. W., and Bowen-Pope, D. F., The biology of platelet-derived growth factor. Cell_46_ (1986) 155–169. ArticleCASPubMed Google Scholar
Rubanyi, G. M., Romero, J. C., and Vanhoutte, P. M., Flow-induced release of endothelium-derived relaxing factor. Am. J. Physiol.250 (Heart Circ. Physiol. 19) (1986) H1145-H1149. CASPubMed Google Scholar
Sakariassen, K. S., Nievelstein, P. F. E. M., Coller, B. S., and Sixma, J. J., The role of platelet membrane glycoproteis Ib and IIb-IIIa in platelet adherence to human artery subendothelium. Bot. J. Haemat.63 (1986) 681–691. ArticleCAS Google Scholar
Sato, M., Levesque, M. J., Nerem, R. M., and Ohshima, N., Mechanical properties of cultured endothelial cells exposed to shear stress. Frontiers Med. Biol. Engng_2_ (1990) 171–5. CAS Google Scholar
Schilling, W. P., Mo, M., and Eskin, S. G., Effect of shear stress on cytosolic Ca2+ of calf pulmonary artery endothelial cells. Expl Cell Res.198 (1992) 31–35. ArticleCAS Google Scholar
Schwarz, G., Droogmans, G., and Nilius, B., Shear stress induced membrane currents and calcium transients in human vascular endothelial cells. Pflügers Arch.421 (1992) 394–396. ArticleCASPubMed Google Scholar
Shen, J., Luscinskas, W., Connolly, A., Dewey, C. F. Jr, and Gimbrone, M. A. Jr, Fluid shear stress modulates cytosolic free calcium in vascular endothelial cells. Am. J. Physiol.262 (Cell Physiol. 31) (1992) C384-C390. ArticleCASPubMed Google Scholar
Sherwood, J. B., Goldwasser, E., Chilcote, R., Carmichel, O. D., and Nagel, R. L., Sickle cell anemia patients have low erythropoietin levels for their degree of anemia. Blood_67_ (1986) 46–49. ArticleCASPubMed Google Scholar
Singh, A., Eckardt, K. U., Zimmermann, A., Götz, K. H., Hamann, M., Ratcliffe, P. J., Kurtz, A., and Reinhart, W. H., Increased plasma viscosity as a reason for inappropriate erythropoietin formation. J. clin. Invest.91 (1993) 251–256. ArticleCASPubMedPubMed Central Google Scholar
Sprague, E. A., Steinbach, B. L., Nerem, R. M., and Schwartz, C. J., Influence of a laminar steady-state fluid-imposed wall shear stress on the binding, internalization, and degradation of low-density lipoproteins by cultured arterial endothelium. Circulation_76_ (1987) 648–656. ArticleCASPubMed Google Scholar
Texon, M., The hemodynamic concept of atherosclerosis. Bull. NY Acad. Med.36 (1960) 263–274. CAS Google Scholar
Tijburg, P. N. M., Ijsseldijk, M. J. W., Sixma, J. J., and de Groot, P. G., Quantification of fibrin deposition and appearance of fibrin monomers. Arterioscler. Thromb.11 (1991) 211–220. ArticleCASPubMed Google Scholar
Tschopp, T. B., Weiss, H. J., and Baumgartner, H. R., Decreased adhesion of platelets to subendothelium in von Willebrand's disease. J. Lab. clin. Med.83 (1974) 296–300. CASPubMed Google Scholar
Weiss, H. J., Turitto, V. T., and Baumgartner, H. R., Role of shear rate and platelets in promoting fibrin formation on rabbit subendothelium. Studies utilizing patients with quantitative and qualitative platelet defects. J. clin. Invest.78 (1986) 1072–1082. ArticleCASPubMedPubMed Central Google Scholar
Wolinsky, H., and Glagov, S., A lamellar unit of aortic medial structure and function in mammals. Circulation Res.20 (1967) 99–111. ArticleCASPubMed Google Scholar
Wong, A. J., Pollard, T. D., and Hermann, I. M., Actin filament stress fibers in vascular endothelial cells in vivo. Science_219_ (1983) 867–9. ArticleCASPubMed Google Scholar
Yanagisawa, M., Kurihara, H., Kimura, S., Tomobe, Y., Kohayashi, M., Mitsui, T., Yazako, Y., Goto, K., and Masaki, T., A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature, London_332_ (1988) 411–415. ArticleCASPubMed Google Scholar
Yedgar, S., Weinstein, D. B., Patsch, W., Schonfeld, G., Casanada, F. E., and Steinberg, D., Viscosity of culture medium as a regulator of synthesis and secretion of very low density lipoproteins by cultured hepatocytes. J. biol. Chem.257 (1982) 2188–2192. ArticleCASPubMed Google Scholar
Yoshizumi, M., Kurihara, H., Sugiyama, T., Takaku, F., Yanagisawa, M., Masaki, T., and Yazaki, Y., Hemodynamic shear stress stimulates endothelin production by cultured endothelial cells. Biochem. biophys. Res. Commun.161 (1989) 859–864. ArticleCASPubMed Google Scholar
Zwaginga, J. J., Sixma, J. J., and de Groot, P. G., Activation of endothelial cells induces platelet thrombus formation on their matrix. Studies of new in vitro thrombosis model with low molecular weight heparin as anticoagulant. Arteriosclerosis_10_ (1990) 49–61. ArticleCASPubMed Google Scholar