Shear-dependence of endothelial functions (original) (raw)

References

  1. Alevriadou, B. R., Eskin, S. G., McIntire, L. V., and Schilling, W. P., Effect of shear stress on86Rb+ efflux from calf pulmonary artery endothelial cells. Ann. Biomed. Eng.21 (1993) 1–7.
    Article CAS PubMed Google Scholar
  2. Alevriadou, B. R., Moake, J. L., Turner, N. A., Ruggeri, Z. M., Folie, B. J., Phillips, M. D., Schreiber, A. B., Hrinda, M. E., and McIntire, L. V., Real-time analysis of shear-dependent thrombus formation and its blockade by inhibitors of von Willebrand factor binding to platelets. Blood_81_ (1993) 1263–1276.
    Article CAS PubMed Google Scholar
  3. Ando, J., Komatsuda, T., Ischikawa, C., and Kamiya, A., Fluid shear stress enhanced DNA synthesis in cultured endothelial cells during repair of mechanical denudation. Biorheology_27_ (1990) 675–684.
    Article CAS PubMed Google Scholar
  4. Asakura, T., and Karino, T., Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circulation Res.66 (1990) 1045–1066.
    Article CAS PubMed Google Scholar
  5. Badimon, J. J., Fuster, V., Chesebro, J. H., and Badimon, L., Coronary atherosclerosis. A multifactorial disease. Circulation_87_ (suppl. II) (1993) 3–16.
    Google Scholar
  6. Barabino, G. A., McIntire, L. V., Eskin, S. G., Sears, D. A., and Udden, M., Endothelial cell interactions with sickle cell, sickle trait, mechanically injured, and normal erythrocytes under controlled flow. Blood_70_ (1987) 152–157.
    Article CAS PubMed Google Scholar
  7. Bastida, E., Almirall, L., and Ordinas, A., Platelet and shear rate promote tumor cell adhesion to human endothelial extracellular matrix-Absence of a role for platelet cyclooxygenase. Thromb. Haemostas.61 (1989) 485–489.
    Article CAS Google Scholar
  8. Baumgartner, H. R., The role of blood flow in platelet adhesion, fibrin deposition, and formation of mural thrombi. Microvasc. Res.5 (1973) 167–179.
    Article CAS PubMed Google Scholar
  9. Baumgartner, H. R., and Sakariassen, K. S., Factors controlling thrombus formation on arterial lesions. Ann. NY Acad. Sci.454 (1973) 167–179.
    Google Scholar
  10. Bhagyalakshmi, A., Berthiaume, F., Reich, K. M., and Frangos, J. A., Fluid shear stress stimulates membrane phospholipid metabolism in cultured human endothelial cells. J. vasc. Res.29 (1992) 443–449.
    Article CAS PubMed Google Scholar
  11. Buga, G. M., Gold, M. E., Fukuto, J. M., and Ignarro, L. J., Shear stress-induced release of nitric oxide from endothelial cells grown on beads. Hypertension_17_ (1991) 187–193.
    Article CAS PubMed Google Scholar
  12. Carosi, J. A., Eskin, S. G., and McIntire, L. V., Cyclical strain effects on production of vasoactive materials in cultured endothelial cells. J. Cell Physiol.151 (1992) 29–36.
    Article CAS PubMed Google Scholar
  13. Chien, S., Jan, K. M., and Simchon, S., Effects of blood viscosity on renin secretion. Biorheology_27_ (1990) 509–517.
    Article Google Scholar
  14. Chow, T. W., Hellums, J. D., Moake, J. L., and Kroll, M. H., Induced von Willebrand factor binding to platelet glycoprotein Ib initiates calcium influx associated with aggregation. Blood_80_ (1992) 113–120.
    Article CAS PubMed Google Scholar
  15. Christ, G., Steiffert, D., Hufnagl, P., Gessl, A., Woijta, J., and Binder, B. R., Type 1 plasminogen activator inhibitor synthesis of endothelial cells is downregulated by smooth muscle cells. Blood_81_ (1993) 1277–1283.
    Article CAS PubMed Google Scholar
  16. Davies, P. F., Dewey, C. F. Jr., Bussolari, S. R., Gordon, E. J., and Gimbrone, M. A. Jr., Influence of hemodynamic forces on vascular endothelial function. In vitro studies of shear stress and pinocytosis in bovine aortic cells. J. clin. Invest.73 (1984) 1121–1129.
    Article CAS PubMed PubMed Central Google Scholar
  17. Davies, P. F., Remuzzi, A., Gordon, E. J., Dewey, C. F. Jr, and Gimbrone, M. A. Jr, Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc. natl Acad. Sci. USA_83_ (1986) 2114–2117.
    Article CAS PubMed PubMed Central Google Scholar
  18. DeForrest, J. M., and Hollis, T. M., Shear stress and aortic histamine synthesis. Am. J. Physiol.,234 (Heart Circ. Physiol 3) (1978) H701-H705.
    CAS PubMed Google Scholar
  19. Dewey, C. F. Jr, Bussolari, S. R., Gimbrone, M. A. Jr, and Davies, P. F., The dynamic response of vascular endothelial cells to fluid shear stress. ASME J. Biomech. Eng.103 (1981) 177–185.
    Article Google Scholar
  20. Diamond, S. L., Eskin, S. G., and McIntire, L. V., Fluid flow stimulates tissue plasminogen activator secretion by cultured human endothelial cells. Science_243_ (1989) 1483–1485.
    Article CAS PubMed Google Scholar
  21. Diamond, S. L., Sharefkin, J. B., Dieffenbach, C., Frasier-Scott, K., McIntire, L. V., and Eskin, S. G., Tissue plasminogen activator messenger RNA levels increase in cultured human endothelial cells exposed to laminar shear stress. J. Cell Physiol.143 (1990) 364–371.
    Article CAS PubMed Google Scholar
  22. Duguid, J. B., and Robertson, W. B., Mechanical factors in atherosclerosis. Lancet_I_ (1957) 1205–1209.
    Article Google Scholar
  23. Dull, R. O., and Davies, P. F., Flow modulation of agonist (ATP)-response (Ca2+) coupling in vascular endothelial cells. Am. J. Physiol. (Heart Circ Physiol)261 (1991) H149-H154.
    Article CAS Google Scholar
  24. Esmon, C. T., The regulation of natural anticoagulant pathways. Science_235_ (1987) 1348–1352.
    Article CAS PubMed Google Scholar
  25. Frangos, J. A., Eskin, S. G., McIntire, L. V., and Ives, C. L., Flow effects on prostacyclin production by cultured human endothelial cells. Science_227_ (1985) 1477–1479.
    Article CAS PubMed Google Scholar
  26. Franke, R. P., Gräfe, M., Schnittler, H., Seiffge, D., and Mittermayer, C., Induction of human vascular endothelial stress fibers by fluid shear stress. Nature_307_ (1984) 648–9.
    Article CAS PubMed Google Scholar
  27. Goto, S., Ikeda, Y., Murata, M., Handa, M., Takahashi, E., Yoshioka, A., Fujimura, Y., Fukuyama, M., Handa, S., and Ogawa, S., Epinephrine augments von Willebrand factordependent shear-induced platelet aggregation. Circulation_86_ (1992) 1859–1863.
    Article CAS PubMed Google Scholar
  28. Grabowski, E. F., Jaffe, E. A., and Weksler, B. B., Prostacyclin production by cultured endothelial cell monolayers exposed to step increases in shear stress. J. Lab. clin. Med.105 (1985) 36–43.
    CAS PubMed Google Scholar
  29. Gupte, A., and Frangos, J. A., Effects of flow on the synthesis and release of fibronectin by endothelial cells. In Vitro Cell Dev. Biol.26 (1990) 57–60.
    Article CAS PubMed Google Scholar
  30. Hsieh, H. J., Li, N. Q., and Frangos, J. A., Shear stress increases endothelial platelet-derived growth factor mRNA levels. Am. J. Physiol_260_ (Heart Circ Physiol 29) (1991) H642-H646.
    CAS PubMed Google Scholar
  31. Hsieh, H. J., Li, N. Q., and Frangos, J. A., Shear-induced platelet-derived growth factor gene expression in human endothelial cells is mediated by protein kinase C. J. Cell. Physiol.150 (1992) 552–558.
    Article CAS PubMed Google Scholar
  32. Inauen, W., Baumgartner, H. R., Bombeli, T., Haeberli, A., and Straub, P. W., Dose- and shear-dependent effects of heparin on thrombogenesis induced by rabbit aorta subendothelium exposed to flowing human blood. Arteriosclerosis_10_ (1990) 607–615.
    Article CAS PubMed Google Scholar
  33. Jo, H., Dull, R. O., Hollis, T. M., and Tarbell, J. M., Endothelial albumin permeability is shear dependent, time dependent, and reversible. Am. J. Physiol.260 (Heart Circ Physiol 29) (1991) H1992-H1996.
    CAS PubMed Google Scholar
  34. Koller, A., and Kaley, G., Endothelial regulation of wall shear stress and blood flow in skeletal muscle microcirculation. Am. J. Physiol.260 (Heart Circ Physiol 29) (1991) H862-H868.
    CAS PubMed Google Scholar
  35. Kraiss, L. W., Kirkman, T. R., Kohler, T. R., Zierler, B., and Clowes, A. W., Shear stress regulates smooth muscle proliferation and neointimal thickening in porous polytetrafluoroethylene grafts. Arterioscler. Thromb.11 (1991) 1844–1852.
    Article CAS PubMed Google Scholar
  36. Ku, D. N., Giddens, D. P., Zarins, C. K., and Glagov, S., Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low and oscillatory shear stress. Arteriosclerosis_5_ (1985) 293–302.
    Article CAS PubMed Google Scholar
  37. Kuchan, M. J., and Frangos, J. A., Shear stress regulates endothelin-1 release via protein kinase C and cGMP in cultured endothelial cells. Am. J. Physiol.264 (Heart Circ. Physiol. 33) (1993) H150-H156.
    CAS PubMed Google Scholar
  38. Kuo, L., Davies, M. J., and Chilian, W. M., Endothelium-dependent flow-induced dilation of isolated coronary arterioles. Am. J. Physiol.259 (Heart Circ. Physiol. 28) (1990) H1063-H1070.
    CAS PubMed Google Scholar
  39. Koury, S. T., Bondurant, M. C., Koury, M. J., Localization of erythropoietin synthesizing cells in murine kidney by in situ hybridization. Blood_71_ (1988) 524–527.
    Article CAS PubMed Google Scholar
  40. Lamontagne, D., Pohl, U., and Busse, R., Mechanical deformation of vessel wall and shear stress determine the basal release of endothelium-derived relaxing factor in the intact rabbit coronary vascular bed. Circulation Res.70 (1992) 127–130.
    Article Google Scholar
  41. Langille, B. L., Graham, J. J. K., Kim, D., and Gotlieb, A. I., Dynamics of shear-induced redistribution of F-actin in endothelial cells in vivo. Arterioscler. Thromb.11 (1991) 1814–20.
    Article CAS PubMed Google Scholar
  42. Lansman, J. B., Hallam, T. J., and Rink, T. J., Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? Nature_325_ (1987) 811–813.
    Article CAS PubMed Google Scholar
  43. Lasky, L. A., Selectins: Interpreters of cell-specific carbohydrate information during inflammation. Science_258_ (1992) 964–969.
    Article CAS PubMed Google Scholar
  44. Lawrence, M. B., Smith, C. W., Eskin, S. G., and McIntire, L. V., Effect of venous shear stress on CD18-mediated neutrophil adhesion to cultured endothelium. Blood_75_ (1990) 227–237.
    Article CAS PubMed Google Scholar
  45. Lawrence, M. B., and Springer, T. A., Leukocytes roll on a selectin at physiological flow rates: Distinction from and prerequisite for adhesion through integrins. Cell_65_ (1991) 859–873.
    Article CAS PubMed Google Scholar
  46. Levenson, J., Devynck, M. A., Pithois-Merli, I., Le Quan Sang K. H., Filitti, V., and Simon, A., Dynamic association between artery shear flow condition and platelet cytosolic free Ca2+ concentration in human hypertension. Clin. Sci.79 (1990) 613–618.
    Article CAS Google Scholar
  47. Levesque, M. J., Liepsch, D., Moravec, S., and Nerem, R. M., Correlation of endothelial cell shape and wall shear stress in a stenosed dog aorta. Arteriosclerosis_6_ (1986) 220–9.
    Article CAS PubMed Google Scholar
  48. Ludwig, H., Fritz, E., Kotzmann, H., Höcker, P., Gisslinger, H., and Barnas, U., Erythropoietin treatment of anemia associated with multiple myeloma. N. Engl. J. Med.322 (1990) 1693–1699.
    Article CAS PubMed Google Scholar
  49. Malek, A. M., Greene, A. L., and Izumo, S., Regulation of endothelin 1 gene by fluid shear stress is transcriptionally mediated and independent of protein kinase C and cAMP. Proc. natl Acad. Sci. USA_90_ (1993) 5999–6003.
    Article CAS PubMed PubMed Central Google Scholar
  50. Malek, A. M., and Izumo, S., Physiological fluid shear stress causes down-regulation of endothelin-1 mRNA in bovine aortic endothelium. Am. J. Physiol.263 (Cell Physiol. 32) (1992) C389-C396.
    Article CAS PubMed Google Scholar
  51. Melkumyants, A. M., and Balashow, S. A., Effect of blood viscosity on arterial flow induced dilator response. Cardiovasc. Res.24 (1990) 165–168.
    Article CAS PubMed Google Scholar
  52. Mo, M., Eskin, S. G., and Schilling, W. P., Flow-induced changes in Ca2+ signaling of vascular endothelial cells: effect of shear stress and ATP. Am. J. Physiol.260 (Heart Circ. Physiol. 29) (1991) H1698-H1707.
    CAS PubMed Google Scholar
  53. Montenegro, M. R., and Eggen, D. A., Topography of atherosclerosis in the coronary arteries. Lab. Invest.18 (1968) 586–593.
    CAS PubMed Google Scholar
  54. Nabel, E. G., Selwyn, A. P., and Ganz, P., Large coronary arteries in humans are responsive to changing blood flow: An endothelium-dependent mechanism that fails in patients with atherosclerosis. J. Am. Coll. Cardiol.16 (1990) 349–356.
    Article CAS PubMed Google Scholar
  55. Nollert, M. U., Panero, N. J., and McIntire, L. V., Regulation of genetic expression in shear stress-stimulated endothelial cells. Ann. NY Acad. Sci.665 (1992) 94–104.
    Article CAS PubMed Google Scholar
  56. O'Brian, J. R., Shear-induced platelet aggregation. Lancet_335_ (1990) 711–713.
    Article Google Scholar
  57. Ohno, M., Gibbons, G. H., Lopez, F., Cooke, J. P., and Dzau, V. J., Shear stress induces transforming growth factor beta 1 (TGF-β1) expression via a flow-activated potassium channel. Clin. Res.40 (1992) 294A.
    Google Scholar
  58. Olesen, S. P., Clapham, D. E., and Davies, P. F., Hemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature_331_ (1988) 168–170.
    Article CAS PubMed Google Scholar
  59. Ookawa, K., Sato, M., and Ohshima, N., Changes in the microstructure of cultured porcine aortic endothelial cells in the early stage after applying a fluid-imposed shear stress. J. Biomechanics_25_ (1992) 1321–1328.
    Article CAS Google Scholar
  60. Penny, W. F., Weinstein, M. J., Salzman, E. W., and Ware, J. A., Correlation of circulating von Willebrand factor levels with cardiovascular hemodynamics. Circulation_83_ (1991) 1630–1636.
    Article CAS PubMed Google Scholar
  61. Perry, M. A., and Granger, D. N., Role of CD11/CD18 in shear rate-dependent leukocyte-endothelial cell interactions in cat mesenteric venules. J. clin. Invest.87 (1991) 1798–1804.
    Article CAS PubMed PubMed Central Google Scholar
  62. Pohl, U., Bausse, R., Kuon, E., and Bassenge, E., Pulsatile perfusion stimulates the release of endothelial autacoids. J. appl. Cardiol.1 (1986) 215–235.
    CAS Google Scholar
  63. Pohl, U., Herlan, K., Huang, A., and Bassenge, E., EDRF-mediated shear-induced dilation opposes myogenic vasoconstriction in small rabbit arteries. Am. J. Physiol.261 (Heart Circ. Physiol. 30) (1991) H2016-H2023.
    CAS PubMed Google Scholar
  64. Pohl, U., Holtz, J., Busse, R., and Bassenge, E., Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension_8_ (1986) 37–44.
    Article CAS PubMed Google Scholar
  65. Predel, H.-G., Yang, Z., von Segesser, L., Turina, M., Bühler, F. R., and Lüscher, T. F., Implications of pulsatile stretch on growth of saphenous vein and mammary artery smooth muscle. Lancet_340_ (1992) 878–879.
    Article CAS PubMed Google Scholar
  66. Puck, T. T., Cyclic AMP, the microtubule-microfilament system, and cancer. Proc. natl Acad. Sci. USA_74_ (1977) 4491–4495.
    Article CAS PubMed PubMed Central Google Scholar
  67. Reich, K. M., Gay, C. V., and Frangos, J. A., Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production. J. Cell. Physiol.143 (1990) 100–104.
    Article CAS PubMed Google Scholar
  68. Ross, R., Raines, E. W., and Bowen-Pope, D. F., The biology of platelet-derived growth factor. Cell_46_ (1986) 155–169.
    Article CAS PubMed Google Scholar
  69. Rubanyi, G. M., Romero, J. C., and Vanhoutte, P. M., Flow-induced release of endothelium-derived relaxing factor. Am. J. Physiol.250 (Heart Circ. Physiol. 19) (1986) H1145-H1149.
    CAS PubMed Google Scholar
  70. Sakariassen, K. S., Nievelstein, P. F. E. M., Coller, B. S., and Sixma, J. J., The role of platelet membrane glycoproteis Ib and IIb-IIIa in platelet adherence to human artery subendothelium. Bot. J. Haemat.63 (1986) 681–691.
    Article CAS Google Scholar
  71. Sato, M., Levesque, M. J., Nerem, R. M., and Ohshima, N., Mechanical properties of cultured endothelial cells exposed to shear stress. Frontiers Med. Biol. Engng_2_ (1990) 171–5.
    CAS Google Scholar
  72. Schilling, W. P., Mo, M., and Eskin, S. G., Effect of shear stress on cytosolic Ca2+ of calf pulmonary artery endothelial cells. Expl Cell Res.198 (1992) 31–35.
    Article CAS Google Scholar
  73. Schwarz, G., Droogmans, G., and Nilius, B., Shear stress induced membrane currents and calcium transients in human vascular endothelial cells. Pflügers Arch.421 (1992) 394–396.
    Article CAS PubMed Google Scholar
  74. Shen, J., Luscinskas, W., Connolly, A., Dewey, C. F. Jr, and Gimbrone, M. A. Jr, Fluid shear stress modulates cytosolic free calcium in vascular endothelial cells. Am. J. Physiol.262 (Cell Physiol. 31) (1992) C384-C390.
    Article CAS PubMed Google Scholar
  75. Sherwood, J. B., Goldwasser, E., Chilcote, R., Carmichel, O. D., and Nagel, R. L., Sickle cell anemia patients have low erythropoietin levels for their degree of anemia. Blood_67_ (1986) 46–49.
    Article CAS PubMed Google Scholar
  76. Singh, A., Eckardt, K. U., Zimmermann, A., Götz, K. H., Hamann, M., Ratcliffe, P. J., Kurtz, A., and Reinhart, W. H., Increased plasma viscosity as a reason for inappropriate erythropoietin formation. J. clin. Invest.91 (1993) 251–256.
    Article CAS PubMed PubMed Central Google Scholar
  77. Sprague, E. A., Steinbach, B. L., Nerem, R. M., and Schwartz, C. J., Influence of a laminar steady-state fluid-imposed wall shear stress on the binding, internalization, and degradation of low-density lipoproteins by cultured arterial endothelium. Circulation_76_ (1987) 648–656.
    Article CAS PubMed Google Scholar
  78. Springer, T. A., Adhesion receptors of the immune system. Nature_346_ (1990) 425–434.
    Article CAS PubMed Google Scholar
  79. Texon, M., The hemodynamic concept of atherosclerosis. Bull. NY Acad. Med.36 (1960) 263–274.
    CAS Google Scholar
  80. Tijburg, P. N. M., Ijsseldijk, M. J. W., Sixma, J. J., and de Groot, P. G., Quantification of fibrin deposition and appearance of fibrin monomers. Arterioscler. Thromb.11 (1991) 211–220.
    Article CAS PubMed Google Scholar
  81. Tschopp, T. B., Weiss, H. J., and Baumgartner, H. R., Decreased adhesion of platelets to subendothelium in von Willebrand's disease. J. Lab. clin. Med.83 (1974) 296–300.
    CAS PubMed Google Scholar
  82. Weiss, H. J., Turitto, V. T., and Baumgartner, H. R., Role of shear rate and platelets in promoting fibrin formation on rabbit subendothelium. Studies utilizing patients with quantitative and qualitative platelet defects. J. clin. Invest.78 (1986) 1072–1082.
    Article CAS PubMed PubMed Central Google Scholar
  83. Wolinsky, H., and Glagov, S., A lamellar unit of aortic medial structure and function in mammals. Circulation Res.20 (1967) 99–111.
    Article CAS PubMed Google Scholar
  84. Wong, A. J., Pollard, T. D., and Hermann, I. M., Actin filament stress fibers in vascular endothelial cells in vivo. Science_219_ (1983) 867–9.
    Article CAS PubMed Google Scholar
  85. Yanagisawa, M., Kurihara, H., Kimura, S., Tomobe, Y., Kohayashi, M., Mitsui, T., Yazako, Y., Goto, K., and Masaki, T., A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature, London_332_ (1988) 411–415.
    Article CAS PubMed Google Scholar
  86. Yedgar, S., Weinstein, D. B., Patsch, W., Schonfeld, G., Casanada, F. E., and Steinberg, D., Viscosity of culture medium as a regulator of synthesis and secretion of very low density lipoproteins by cultured hepatocytes. J. biol. Chem.257 (1982) 2188–2192.
    Article CAS PubMed Google Scholar
  87. Yoshizumi, M., Kurihara, H., Sugiyama, T., Takaku, F., Yanagisawa, M., Masaki, T., and Yazaki, Y., Hemodynamic shear stress stimulates endothelin production by cultured endothelial cells. Biochem. biophys. Res. Commun.161 (1989) 859–864.
    Article CAS PubMed Google Scholar
  88. Zwaginga, J. J., Sixma, J. J., and de Groot, P. G., Activation of endothelial cells induces platelet thrombus formation on their matrix. Studies of new in vitro thrombosis model with low molecular weight heparin as anticoagulant. Arteriosclerosis_10_ (1990) 49–61.
    Article CAS PubMed Google Scholar

Download references