Will the recently approved LARES mission be able to measure the Lense–Thirring effect at 1%? (original) (raw)

References

  1. Ciufolini I.: Phys. Rev. Lett. 56, 278 (1986)
    Article ADS Google Scholar
  2. Ciufolini I.: N. Cim. A 109, 1709 (1996)
    Article ADS Google Scholar
  3. Ciufolini, I.: LARES/WEBER-SAT, frame-dragging and fundamental physics (preprint, 2004). (gr-qc/0412001v3)
  4. Ciufolini, I.: On the orbit of the LARES satellite (preprint, 2006). (gr-qc/0609081v1)
  5. Ciufolini I. et al.: LARES Phase A. University La Sapienza, Rome (1998)
    Google Scholar
  6. Ciufolini, I.: Downloadable at http://www.infn.it/indexen.php→ASTROPARTICLEPHYSICS→ Calendarioriunioni→Roma,30gennaio2008→14:30AggiornamentoLARES(20’)→lares_dellagnello. pdf, p. 17 (2008)
  7. Everitt C.W.F.: The Gyroscope Experiment I. In: General, description, analysisofgyroscopeperformance. Bertotti, B. (eds) Proc. Int. School Phys. “Enrico Fermi” Course LVI, pp. 331–60. New Academic Press, New York (1974)
    Google Scholar
  8. Everitt C.W.F. et al.: Gravity Probe B: Countdown to Launch in Gyros, Clocks. In: Lämmerzahl, C., Everitt, C.W.F., Hehl, F.W. (eds) Interferometers...: Testing Relativistic Gravity in Space, pp. 52–82. Springer, Berlin (2001)
    Chapter Google Scholar
  9. Förste, C., et al.: A new high resolution global gravity field model derived from combination of GRACE and CHAMP mission and altimetry/gravimetry surface gravity data. EGU General Assembly 2005 Vienna, AT, 24–29 April 2005
  10. Inversi P., Vespe F.: Adv. Space Res. 14, 73 (1994)
    Article ADS Google Scholar
  11. Iorio L.: Class. Quantum Grav. 19, L175 (2002)
    Article MATH MathSciNet ADS Google Scholar
  12. Iorio L.: Celest. Mech. Dyn. Astron. 86, 277 (2003)
    Article MATH ADS Google Scholar
  13. Iorio L.: New Astron. 10, 616 (2005)
    Article ADS Google Scholar
  14. Iorio, L.: J. Cosmol. Astropart. Phys. JCAP07 (2005)008 (2005)
  15. Iorio L.: Planet. Space Sci. 55, 1198 (2007)
    Article ADS Google Scholar
  16. Iorio L.: Europhys. Lett. 80, 40007 (2007)
    Article ADS Google Scholar
  17. Iorio L., Lucchesi D.M., Ciufolini I.: Class. Quantum Grav. 19, 4311 (2002)
    Article MATH ADS Google Scholar
  18. Kaula W.M.: Theory of Satellite Geodesy. Blaisdell, Waltham (1966)
    Google Scholar
  19. Lense J., Thirring H.: Phys. Z. 19, 156 (1918)
    Google Scholar
  20. Lucchesi D.M.: Planet. Space Sci. 49, 447 (2001)
    Article ADS Google Scholar
  21. Lucchesi D.M.: Planet. Space Sci. 50, 1067 (2002)
    Article ADS Google Scholar
  22. Lucchesi D.M.: Geophys. Res. Lett. 30, 1957 (2003)
    Article ADS Google Scholar
  23. Lucchesi D.M.: Celest. Mech. Dyn. Astron. 88, 269 (2004)
    Article MATH ADS Google Scholar
  24. Lucchesi, D.M., Paolozzi, A.: A cost effective approach for LARES satellite XVI Congresso Nazionale AIDAA, Palermo, IT, 24–28 September 2001
  25. Lucchesi D.M., Ciufolini I., Andrés J.I., Pavlis E.C., Peron R., Noomen R., Currie D.G.: Planet. Space Sci. 52, 699 (2004)
    Article ADS Google Scholar
  26. Mashhoon B.: Gravitoelectromagnetism: a brief review. In: Iorio, L. (eds) The Measurement of Gravitomagnetism: A Challenging Enterprise., pp. 29–39. NOVA, Hauppauge (2007)
    Google Scholar
  27. Mayer-Gürr, T., Eicker, A., Ilk, K.-H.: ITG-GRACE02s: a GRACE gravity field derived from short arcs of the satellite’s orbit. In: First Int. Symp. of the International Gravity Field Service “Gravity field of the earth”, Istanbul, TR, 28 August–1 September 2006
  28. Mayer-Gürr, T.: ITG-Grace03s: the latest GRACE gravity field solution computed in Bonn. In: Joint Int. GSTM and DFG SPP Symp., Potsdam, D, 15–17 October 2007. http://www.geod.uni-bonn.de/itg-grace03.html
  29. Milani A., Nobili A.M., Farinella P.: Non-Gravitational Perturbations and Satellite Geodesy. Adam Hilger, Bristol (1987)
    MATH Google Scholar
  30. Pavlis, N.K., et al.: Paper presented at the 2008 General Assembly of the European Geosciences Union, Vienna, 13–18 April 2008
  31. Pfister H.: Gen. Relativ. Gravit. 39, 1735 (2007)
    Article MATH MathSciNet ADS Google Scholar
  32. Pugh, G.E.: WSEG Research Memorandum No. 11 (1959)
  33. Reigber Ch., Schmidt R., Flechtner F., König R., Meyer U., Neumayer K.-H., Schwintzer P., Zhu S.Y.: J. Geodyn. 39, 1 (2005)
    Article Google Scholar
  34. Ries, J.C., Eanes, R.J., Watkins, M.M., Tapley, B.: Joint NASA/ASI Study on Measuring the Lense–Thirring Precession Using a Second LAGEOS Satellite. CSR-89-3. The University of Texas at Austin: Center for Space Research (1989)
  35. Ries J.C., Eanes R.J., Tapley B.D.: Lense–Thirring precession determination from laser ranging to artificial satellites nonlinear gravitodynamics. In: Ruffini, R.J., Sigismondi, C. (eds) The Lense–Thirring Effect., pp. 201–211. World Scientific, Singapore (2003)
    Google Scholar
  36. Ruggiero, M.L., Tartaglia, A.: N. Cim. B 1179, 743 (2002)
    ADS Google Scholar
  37. Schiff L.: Phys. Rev. Lett. 4, 215 (1960)
    Article ADS Google Scholar
  38. Tapley B.D. et al.: J. Geod. 79, 467 (2005)
    Article ADS Google Scholar
  39. Tapley, B.D., Ries, J., Bettadpur, S., Chambers, D., Cheng, M., Condi, F., Poole, S.: American Geophysical Union, Fall Meeting, abstract #G42A-03 (2007)
  40. Van Patten R.A., Everitt C.W.F.: Phys. Rev. Lett. 36, 629 (1976)
    Article ADS Google Scholar
  41. Van Patten R.A., Everitt C.W.F.: Celest. Mech. Dyn. Astron. 13, 429 (1976)
    Google Scholar
  42. Vespe F.: Adv. Space Res. 23, 699 (1999)
    Article ADS Google Scholar

Download references