- Ishikawa T, Nakagawa H. Human ABC transporter ABCG2 in cancer chemotherapy and pharmacogenomics. J Exp Ther Oncol. 2009;8(1):5–24.
CAS PubMed Google Scholar
- Robey RW, To KK, Polgar O, Dohse M, Fetsch P, Dean M, et al. ABCG2: a perspective. Adv Drug Deliv Rev. 2009;61:3–13.
Article CAS PubMed Google Scholar
- Hardwick LJA, Velamakanni S, van Veen HW. The emerging pharmacotherapeutic significance of the breast cancer resistance protein (ABCG2). Brit J Pharmacol. 2007;151:163–74.
Article CAS Google Scholar
- Robey RW, Polgar O, Deeken J, To KKW, Bates SE. Breast Cancer Resistance Protein. In: You G, Morris ME, editors. Drug Transporters: molecular characterization and role in drug disposition. New Jersey: Wiley; 2007. p. 319–58.
Google Scholar
- Van Herwaarden AE, Wagenaar E, Karnekamp B, Merino G, Jonker JW, Schinkel AH. Breast cancer resistance protein (Bcrp1/Abcg2) reduce systemic exposure of the dietary carcinogens aflatoxin B1, IQ and Trp-P-1 but also mediates their secretion into breast milk. Carcinogenesis. 2006;27:123–30.
Article PubMed Google Scholar
- Jonker JW, Merino G, Musters S, van Herwaarden AE, Bolscher E, Wagenaar E, et al. The breast cancer resistance protein (BCRP/ABCG2) concentrates drugs and carcinogenic xenotoxins into milk. Nat Med. 2005;11:127–9.
Article CAS PubMed Google Scholar
- Merino G, Alvarez AI, Pulido MM, Molina AJ, Schinkel AH, Prieto JG. Breast cancer resistance protein (BCRP/ABCG2) transports fluoroquinolone antibiotics and affects their oral availability, pharmacokinetics, and milk secretion. Drug Metab Dispos. 2006;34:690–5.
Article CAS PubMed Google Scholar
- van Herwaarden AE, Wagenaar E, Merino G, Jonker JW, Rosing H, Beijnen JH, et al. Multidrug transporter ABCG2/breast cancer resistance protein secretes riboflavin (vitamin B2) into milk. Mol Cell Biol. 2007;27:1247–53.
Article PubMed Google Scholar
- Merino G, Jonker JW, Wagenaar E, van Herwaarden AE, Schinkel AH. The breast cancer resistance protein (BCRP/ABCG2) affects pharmacokinetics, hepatobiliary excretion, and milk secretion of the antibiotic Nitrofurantoin. Mol Pharmacol. 2005;67:1758–64.
Article CAS PubMed Google Scholar
- Wang L, Leggas M, Goswami M, Empey PE, McNamara PJ. N-(4-[2-(1, 2, 3, 4-tetrahydro-6, 7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9, 10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918) as a chemical ATP-binding cassette transporter family G member 2 (Abcg2) knockout model to study nitrofurantoin transfer into milk. Drug Metab Dispos. 2008;36:2591–6.
Article CAS PubMed Google Scholar
- Zhang Y, Zhou L, Unadkat JD, Mao Q. Effect of pregnancy on nitrofurantoin disposition in mice. J Pharm Sci. 2009;98:4306–15.
Article CAS PubMed Google Scholar
- Zhang Y, Wang H, Unadkat JD, Mao Q. Bcrp1 Limits Fetal Distribution of Nitrofurantoin in the Pregnant Mouse. Drug Metab Dispos. 2007;35:2154–8.
Article CAS PubMed Google Scholar
- Merino G, van Herwaarden AE, Wagenaar E, Jonker JW, Schinkel AH. Sex-dependent expression and activity of the ATP-binding cassette transporter breast cancer resistance protein (BCRP/ABCG2) in liver. Mol Pharmacol. 2005;67:1765–71.
Article CAS PubMed Google Scholar
- Jacobs A, Wegewitz U, Sommerfeld C, Grossklaus R, Lampen A. Efficacy of isoflavones in relieving vasomotor menopausal symptoms - A systematic review. Mol Nutr Food Res. 2009;53:1084–97.
Article CAS PubMed Google Scholar
- Hu M. Commentary: Bioavailability of Flavonoids and Polyphenols: Call to Arms. Mol Pharm. 2007;4:803–6.
Article CAS PubMed Google Scholar
- Morris ME, Zhang S. Flavonoid-drug interactions: effects of flavonoids on ABC transporters. Life Sci. 2006;78:2116–30.
Article CAS PubMed Google Scholar
- Alvarez AI, Real R, Perez M, Mendoza G, Prieto JG, Merino G. Modulation of the activity of ABC transporters (P-glycoprotein, MRP2, BCRP) by flavonoids and drug response. J Pharm Sci. 2010;99:598–617.
CAS PubMed Google Scholar
- Wang X, Morris ME. Effects of the flavonoid chrysin on nitrofurantoin pharmacokinetics in rats: potential involvement of ABCG2. Drug Metab Dispos. 2007;35:268–74.
Article CAS PubMed Google Scholar
- Zhang S, Yang X, Morris ME. Combined effects of multiple flavonoids on breast cancer resistance protein (ABCG2)-mediated transport. Pharm Res. 2004;21:1263–73.
Article CAS PubMed Google Scholar
- Zhang S, Wang X, Sagawa K, Morris ME. Flavonoids chrysin and benzoflavone, potent breast cancer resistance protein inhibitors, have no significant effect on topotecan pharmacokinetics in rats or mdr1a/1b (-/-) mice. Drug Metab Dispos. 2005;33:341–8.
Article CAS PubMed Google Scholar
- Kawase A, Matsumoto Y, Hadano M, Ishii Y, Iwaki M. Differential effects of chrysin on nitrofurantoin pharmacokinetics mediated by intestinal breast cancer resistance protein in rats and mice. J Pharm Pharm Sci. 2009;12:150–63.
CAS PubMed Google Scholar
- Perez M, Real R, Mendoza G, Merino G, Prieto JG, Alvarez AI. Milk secretion of nitrofurantoin, as a specific BCRP/ABCG2 substrate, in assaf sheep: modulation by isoflavones. J Vet Pharmacol Ther. 2009;32:498–502.
Article CAS PubMed Google Scholar
- Allen JD, van Loevezijn A, Lakhai JM, van der Valk M, van Tellingen O, Reid G, et al. Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Mol Cancer Ther. 2002;1:417–25.
CAS PubMed Google Scholar
- Perez M, Blazquez AG, Real R, Mendoza G, Prieto JG, Merino G, et al. In vitro and in vivo interaction of moxidectin with BCRP/ABCG2. Chem Biol Interact. 2009;180:106–12.
Article CAS PubMed Google Scholar
- Imai Y, Tsukahara S, Asada S, Sugimoto Y. Phytoestrogens/flavonoids reverse breastcancer resistance protein/ABCG2-mediated multidrug resistance. Cancer Res. 2004;64:4346–52.
Article CAS PubMed Google Scholar
- Wang SW, Chen J, Jia X, Tam VH, Hu M. Disposition of flavonoids via enteric recycling: structural effects and lack of correlations between in vitro and in situ metabolic properties. Drug Metab Dispos. 2006;34:1837–48.
Article CAS PubMed Google Scholar
- Zhang S, Sagawa K, Arnold RD, Tseng E, Wang X, Morris ME. Interactions between the flavonoid biochanin A and P-glycoprotein substrates in rats: In vitro and in vivo J. Pharm Sci. 2010;99:430–41.
Article CAS Google Scholar
- Muenster U, Grieshop B, Ickenroth K, Gnoth MJ. Characterization of substrates and inhibitors for the in vitro assessment of BCRP mediated drug-drug interactions. Pharm Res. 2008;25(10):2320–6.
Article CAS PubMed Google Scholar
- Telang U, Ji Y, Morris ME. ABC transporters and isothiocyanates: potential for pharmacokinetic diet-drug interactions Biopharm. Drug Dispos. 2009;30(7):335–44.
Article CAS Google Scholar
- Allen JD, Brinkhuis RF, Wijnholds J, Schinkel AH. The mouse Bcrp1/Mxr/Abcp gene:amplification and overexpression in cell lines selected for resistance totopotecan, mitoxantrone, or doxorubicin. Cancer Res. 1999;59:4237–41.
CAS PubMed Google Scholar
- Xu H, Kulkarni KH, Singh R, Yang Z, Wang SW, Tam VH, et al. Disposition of Naringenin via Glucuronidation Pathway Is Affected by Compensating Efflux Transporters of Hydrophilic Glucuronides. Mol Pharm. 2009;6:1703–15.
Article CAS PubMed Google Scholar
- Pulido MM, Molina AJ, Merino G, Prieto JG, Alvarez AI. Interaction of enrofloxacin with breast cancer resistance protein (BCRP/ABCG2): Influence of flavonoids and role in milk secretion in sheep. J Vet Pharmacol Ther. 2006;29:279–87.
Article CAS PubMed Google Scholar
- Enokizono J, Kusuhara H, Sugiyama Y. Effect of breast cancer resistance protein (Bcrp/Abcg2) on the disposition of phytoestrogens. Mol Pharmacol. 2007;72(4):967–75.
Article CAS PubMed Google Scholar
- Zhang L, Zuo Z, Lin G. Intestinal and hepatic glucuronidation of flavonoids. Mol Pharm. 2007;4(6):833–45.
Article CAS PubMed Google Scholar
- Zhou S, Hu Y, Zhang B, Teng Z, Gan H, Yang Z, et al. Dose-dependent absorption, metabolism, and excretion of genistein in rats. J Agric Food Chem. 2008;56(18):8354–9.
Article CAS PubMed Google Scholar
- Moon YJ, Sagawa K, Frederick K, Zhang S, Morris ME. Pharmacokinetics and bioavailability of the isoflavone biochanin A in rats. AAPS J. 2006;8(3):E433–442.
Article CAS PubMed Google Scholar
- Kishida T, Nagamoto M, Ohtsu Y, Watakabe M, Ohshima D, Nashiki K, et al. Lack of an inducible effect of dietary soy isoflavones on the mRNA abundance of hepatic cytochrome P-450 isozymes in rats. Biosci Biotechnol Biochem. 2004;68(3):508–15.
Article CAS PubMed Google Scholar
- Williamson G, Manach C. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am J Clin Nutr. 2005;81:243S–55S.
CAS PubMed Google Scholar
- Tamaki H, Satoh H, Hori S, Ohtani H, Sawada Y. Inhibitory effects of herbal extracts on breast cancer resistance protein (BCRP) and structure-inhibitory potency relationship of isoflavonoids. Drug Metab Pharmacokinet. 2010;25:170–9.
Article CAS PubMed Google Scholar
- Bolca S, Urpi-Sarda M, Blondeel P, Roche N, Vanhaecke L, Possemiers S, et al. Disposition of soy isoflavones in normal human breast tissue. Am J Clin Nutr. 2010;91:976–84.
Article CAS PubMed Google Scholar
- Reagan-Shaw S, Nihal N, Ahmad M. Dose translation from animal to human studies revisited. FASEB J. 2007;22:659–61.
Article PubMed Google Scholar
- Andrade JE, Twaddle NC, Helferich WG, Doerge DR. Absolute bioavailability of isoflavones from soy protein isolate-containing food in female BALB/c mice. J Agric Food Chem. 2010;58:4529–36.
Article CAS PubMed Google Scholar
- Setchell KD KD, Brown NM, Desai P, Zimmer-Nechemias L, Wolfe BE, Brashear WT, et al. Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements. J Nutr. 2001;131:1362S–75S.
PubMed Google Scholar
- Gu L, House SE, Prior RL, Fang N, Ronis MJ, Clarkson TB, et al. Metabolic phenotype of isoflavones differ among female rats, pigs, monkeys, and women. J Nutr. 2006;136:1215–21.
CAS PubMed Google Scholar
- Cimafranca MA, Davila J, Ekman GC, Andrews RN, Neese SL, Peretz J, et al. Acute and chronic effects of oral genistein administration in neonatal mice. Biol Reprod. 2010;83:114–21.
Article CAS PubMed Google Scholar