Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses (original) (raw)
Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657. doi:10.1126/science.1086391 ArticlePubMed Google Scholar
Andreasson E, Jenkins T, Brodersen P, Thorgrimsen S, Petersen NH, Zhu S, Qiu JL, Micheelsen P, Rocher A, Petersen M, Newman MA, Bjorn Nielsen H, Hirt H, Somssich I, Mattsson O, Mundy J (2005) The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO J 24:2579–2589. doi:10.1038/sj.emboj.7600737 ArticlePubMedCAS Google Scholar
Apse MP, Blumwald E (2002) Engineering salt tolerance in plants. Curr Opin Plant Biotechnol 13:146–150 ArticleCAS Google Scholar
Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741. doi:10.1105/tpc.016238 ArticlePubMedCAS Google Scholar
Baima S, Possenti M, Matteucci A, Wisman E, Altamura MM, Ruberti I, Morelli G (2001) The Arabidopsis ATHB-8 HD-zip protein acts as a differentiation-promoting transcription factor of the vascular meristems. Plant Physiol 126:643–655. doi:10.1104/pp.126.2.643 ArticlePubMedCAS Google Scholar
Blein JP, Coutos-Thévenot P, Marion D, Ponchet M (2002) From elicitins to lipid transfer proteins: a new insight in cell signaling involved in plant defence mechanism. Trends Plant Sci 7:293–296. doi:10.1016/S1360-1385(02)02284-7 ArticlePubMedCAS Google Scholar
Cavalier DM, Keegstra K (2006) Two xyloglucan xylosyltransferases catalyze the addition of multiple xylosyl residues to cellohexose. J Biol Chem 281:34197–34207. doi:10.1074/jbc.M606379200 ArticlePubMedCAS Google Scholar
Chinnusamy V, Schumaker K, Zhu J-K (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55:225–236. doi:10.1093/jxb/erh005 ArticlePubMedCAS Google Scholar
Chinnusamy V, Jagendorf A, Zhu J-K (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448 CAS Google Scholar
Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible W (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17. doi:10.1104/pp.105.063743 ArticlePubMedCAS Google Scholar
Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45 PubMedCAS Google Scholar
Fukuda Y (1997) Interaction of tobacco nuclear proteins with an elicitor responsive element in the promoter of a basic class I chitinase gene. Plant Mol Biol 34:81–87. doi:10.1023/A:1005737128339 ArticlePubMedCAS Google Scholar
Gadjev I, Vanderauwera S, Gechev TS, Laloi C, Minkov IN, Shulaev V, Apel K, Inze D, Mittler R, Van Breusegem F (2006) Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol 141:436–445. doi:10.1104/pp.106.078717 ArticlePubMedCAS Google Scholar
Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442. doi:10.1046/j.1365-313x.1998.00310.x ArticlePubMedCAS Google Scholar
Horton P, Park K-J, Obayashi T, Nakai K (2006) Protein subcellular localization prediction with WoLF PSORT. Proceedings of the 4th annual Asia Pacific bioinformatics conference APBC06, Taipei, Taiwan, pp 39–48
Jiang Y-Q, Deyholos MK (2006) Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol 6:25. doi:10.1186/1471-2229-6-25 ArticlePubMed Google Scholar
Jiang Y-Q, Yang B, Harris NS, Deyholos MK (2007) Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J Exp Bot 58:3591–3607. doi:10.1093/jxb/erm207 ArticlePubMedCAS Google Scholar
Johnson CS, Kolevski B, Smyth DR (2002) TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell 14:1359–1375. doi:10.1105/tpc.001404 ArticlePubMedCAS Google Scholar
Kilili KG, Atanassova N, Vardanyan A, Clatot N, Al-Sabarna K, Kanellopoulos PN, Makris AM, Kampranis SC (2004) Differential roles of Tau class glutathione S-transferases in oxidative stress. J Biol Chem 279:24540–24551. doi:10.1074/jbc.M309882200 ArticlePubMedCAS Google Scholar
Koornneef M, Léon-Kloosterziel KM, Schwartz SH, Zeevaart JA (1998) The genetic and molecular dissection of abscisic acid biosynthesis, signal transduction in Arabidopsis. Plant Physiol Biochem 36:83–89. doi:10.1016/S0981-9428(98)80093-4 ArticleCAS Google Scholar
Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331. doi:10.1105/tpc.016980 ArticlePubMedCAS Google Scholar
Lippok B, Birkenbihl RP, Rivory G, Brümmer J, Schmelzer E, Logemann E, Somssich IE (2007) Expression of AtWRKY33 encoding a pathogen- or PAMP-responsive WRKY transcription factor is regulated by a composite DNA motif containing W box elements. Mol Plant Microbe Interact 20:420–429. doi:10.1094/MPMI-20-4-0420 ArticlePubMedCAS Google Scholar
Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2004) Dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J 37:720–729. doi:10.1111/j.1365-313X.2003.01998.x ArticlePubMedCAS Google Scholar
Maleck K, Levine A, Eulgem T, Morgen A, Schmid J, Lawton K, Dangl JL, Dietrich RA (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet 26:403–410. doi:10.1038/82521 ArticlePubMedCAS Google Scholar
Mare C, Mazzucotelli E, Crosatti C, Francia E, Stanca AM, Cattivelli L (2004) Hv-WRKY38: a new transcription factor involved in cold- and dehydration-response in barley. Plant Mol Biol 55:399–416. doi:10.1007/s11103-004-0906-7 ArticlePubMedCAS Google Scholar
Medina J, Bargues M, Terol J, Pérez-Alonso M, Salinas J (1999) The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol 119:463–470. doi:10.1104/pp.119.2.463 ArticlePubMedCAS Google Scholar
Miao Y, Laun T, Zimmermann P, Zentgraf U (2004) Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55:853–867 PubMedCAS Google Scholar
Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant. doi:101111/j1399-3054200801090x
Pnueli L, Hallak-Herr E, Rozenberg M, Cohen M, Goloubinoff P, Kaplan A, Mittler R (2002) Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam. Plant J 31:319–330 ArticlePubMedCAS Google Scholar
Rizhsky L, Davletova S, Liang H, Mittler R (2004) The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem 279:11736–11743. doi:10.1074/jbc.M313350200 ArticlePubMedCAS Google Scholar
Robatzek S, Somssich IE (2001) A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence- and defence-related processes. Plant J 28:123–133. doi:10.1046/j.1365-313X.2001.01131.x ArticlePubMedCAS Google Scholar
Rushton PJ, Torres JT, Parniske M, Wernert P, Hahlbrock K, Somssich IE (1996) Interaction of elicitor-induced DNA binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J 15:5690–5700 PubMedCAS Google Scholar
Schwacke R, Fischer K, Ketelsen B, Krupinska K, Krause K (2007) Comparative survey of plastid and mitochondrial targeting properties of transcription factors in Arabidopsis and rice. Mol Genet Genomics 277:631–646. doi:10.1007/s00438-007-0214-4 ArticlePubMedCAS Google Scholar
Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K (2003) Molecular responses to dehydration, salinity and frost: common and different paths for plant protection. Curr Opin Biotechnol 14:194–199. doi:10.1016/S0958-1669(03)00030-2 ArticlePubMedCAS Google Scholar
Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D, Dietrich B, Ho P, Bacwaden J, Ko C, Clarke JD, Cotton D, Bullis D, Snell J, Miguel T, Hutchison D, Kimmerly B, Mitzel T, Katagiri F, Glazebrook J, Law M, Goff SA (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14:2985–2994. doi:10.1105/tpc.004630 ArticlePubMedCAS Google Scholar
Skriver K, Olsen FL, Rogers JC, Mundy J (1991) cis-acting DNA elements responsive to gibberellin and its antagonist abscisic acid. Proc Natl Acad Sci USA 88:7266–7270. doi:10.1073/pnas.88.16.7266 ArticlePubMedCAS Google Scholar
Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040. doi:10.1073/pnas.94.3.1035 ArticlePubMedCAS Google Scholar
Sun C, Palmqvist S, Olsson H, Boren M, Ahlandsberg S, Jansson C (2003) A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell 15:2076–2092. doi:10.1105/tpc.014597 ArticlePubMedCAS Google Scholar
Suzuki Y, Kawazu T, Koyama H (2004) RNA isolation from siliques, dry seeds, and other tissues of Arabidopsis thaliana. Biotechniques 37:542–544 PubMedCAS Google Scholar
Taylor CB (1997) Promoter fusion analysis: an insufficient measure of gene expression. Plant Cell 9:273–275 ArticleCAS Google Scholar
Tian Q, Reed JW (1999) Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development 126:711–721 PubMedCAS Google Scholar
van der Graaff E, Hooykaas PJJ, Keller B (2002) Activation tagging of the two closely linked genes LEP and VAS independently affects vascular cell number. Plant J 32:819–830. doi:10.1046/j.1365-313X.2002.01470.x ArticlePubMed Google Scholar
Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu J-K (2006) Methods and concepts in quantifying resistance to dehydration, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539. doi:10.1111/j.1365-313X.2005.02593.x ArticlePubMedCAS Google Scholar
Weigel D, Glazebrook J (2002) Arabidopsis: a laboratory manual. Cold Spring Harbor Laboratory Press, NY, USA Google Scholar
Xie Z, Zhang ZL, Zou XL, Huang J, Ruas P, Thompson D, Shen QJ (2005) Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol 137:176–189. doi:10.1104/pp.104.054312 ArticlePubMedCAS Google Scholar
Xiong L, Lee H, Ishitani M, Zhu J-K (2002a) Regulation of osmotic stress responsive gene expression by LOS6/ABA1 locus in Arabidopsis. J Biol Chem 277:8588–8596. doi:10.1074/jbc.M109275200 ArticlePubMedCAS Google Scholar
Xu YH, Wang JW, Wang S, Wang JY, Chen XY (2004a) Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A. Plant Physiol 135:507–515. doi:10.1104/pp.104.038612 ArticlePubMedCAS Google Scholar
Xu Z, Escamilla-Trevino L, Zeng L, Lalgondar M, Bevan D, Winkel B, Mohamed A, Cheng CL, Shih MC, Poulton J, Esen A (2004b) Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1. Plant Mol Biol 55:343–367. doi:10.1007/s11103-004-0790-1 ArticlePubMedCAS Google Scholar
Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel _cis_-acting element in an Arabidopsis gene is involved in responsiveness to dehydration, low-temperature, or high-salt stress. Plant Cell 6:251–264 ArticlePubMedCAS Google Scholar
Yang LX, Wang RY, Ren F, Liu J, Cheng J, Lu YT (2005) AtGLB1 enhances the tolerance of Arabidopsis to hydrogen peroxide stress. Plant Cell Physiol 46:1309–1316. doi:10.1093/pcp/pci140 ArticlePubMedCAS Google Scholar
Yoo SY, Bomblies K, Yoo SK, Yang JW, Choi MS, Lee JS, Weigel D, Ahn JH (2005) The 35S promoter used in a selectable marker gene of a plant transformation vector affects the expression of the transgene. Planta 221:523–530. doi:10.1007/s00425-004-1466-4 ArticlePubMedCAS Google Scholar
Zhang ZL, Xie Z, Zou X, Casaretto J, Ho TD, Shen QJ (2004) A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol 134:1500–1513. doi:10.1104/pp.103.034967 ArticlePubMedCAS Google Scholar
Zheng Z, Mosher SL, Fan B, Klessig DF, Chen Z (2007) Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae. BMC Plant Biol 7:2. doi:10.1186/1471-2229-7-2 ArticlePubMed Google Scholar
Zhou QY, Tian AG, Zou HF, Xie ZM, Lei G, Huang J, Wang CM, Wang HW, Zhang JS, Chen SY (2008) Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J 6:486–503. doi:10.1111/j.1467-7652.2008.00336.x ArticlePubMedCAS Google Scholar
Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR: Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632. doi:10.1104/pp.104.046367 ArticlePubMedCAS Google Scholar
Zou X, Seemann JR, Neuman D, Shen QJ (2004) A WRKY gene from creosote bush encodes an activator of the abscisic acid signaling pathway. J Biol Chem 279:55770–55779. doi:10.1074/jbc.M408536200 ArticlePubMedCAS Google Scholar