Berberine relieves insulin resistance via the cholinergic anti-inflammatory pathway in HepG2 cells (original) (raw)

References

  1. Akash MSH, Rehman K, Chen S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J Cell Biochem, 2013,114(3):525–531
    Article CAS PubMed Google Scholar
  2. Bergman RN, Finegood DT, Kahn SE. The evolution of beta-cell dysfunction and insulin resistance in type 2 diabetes. Eur J Clin Invest, 2002,32(Suppl 3):35–45
    Article CAS PubMed Google Scholar
  3. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 2006,444(7121):840–846
    Article CAS PubMed Google Scholar
  4. Soumaya K. Molecular mechanisms of insulin resistance in diabetes. Adv Exp Med Biol, 2012,771:240–251
    PubMed Google Scholar
  5. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest, 2006,116(7):1793–1801
    Article PubMed Central CAS PubMed Google Scholar
  6. Bullo M, Garcia-Lorda P, Megias I, et al. Systemic inflammation, adipose tissue tumor necrosis factor, and leptin expression. Obes Res, 2003,11(4):525–531
    Article CAS PubMed Google Scholar
  7. King GL. The role of inflammatory cytokines in diabetes and its complications. J Periodontol, 2008,79(8s):1527–1534
    Article CAS PubMed Google Scholar
  8. Hirabara SM, Gorjão R, Vinolo MA, et al. Molecular targets related to inflammation and insulin resistance and potential interventions. J Biomed Biotechnol, 2012,2012: 1–16
    Article Google Scholar
  9. Tracey KJ. Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest, 2007,117(2): 289–296
    Article PubMed Central CAS PubMed Google Scholar
  10. Rosas-Ballina M, Tracey KJ. The neurology of the immune system: neural reflexes regulate immunity. Neuron, 2009,64(1):28–32
    Article PubMed Central CAS PubMed Google Scholar
  11. Bencherif M, Lippiello PM, Lucas R, et al. Alpha7 nicotinic receptors as novel therapeutic targets for inflammation-based diseases. Cell Mol Life Sci, 2011,68(6):931–949
    Article PubMed Central CAS PubMed Google Scholar
  12. Wang DW, Zhou RB, Yao YM. Role of cholinergic anti-inflammatory pathway in regulating host response and its interventional strategy for inflammatory diseases. Chin J Traumatol, 2009,12(6):355–364
    CAS PubMed Google Scholar
  13. van Westerloo DJ. The vagal immune reflex: a blessing from above. Wien Med Wochenschr, 2010,160(5–6): 112–117
    Article PubMed Google Scholar
  14. Hofer S, Eisenbach C, Lukic IK, et al. Pharmacologic cholinesterase inhibition improves survival in experimental sepsis. Crit Care Med, 2008,36(2):404–408
    Article CAS PubMed Google Scholar
  15. Wang H, Yu M, Ochani M, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature, 2003,421(6921):384–388
    Article CAS PubMed Google Scholar
  16. Marrero MB, Lucas R, Salet C, et al. An alpha7 nicotinic acetylcholine receptor-selective agonist reduces weight gain and metabolic changes in a mouse model of diabetes. J Pharmacol Exp Ther, 2010,332(1):173–180
    Article CAS PubMed Google Scholar
  17. Pazhang Y, Ahmadian S, Mahmoudian M, et al. Berberine-induced apoptosis via decreasing the survivin protein in K562 cell line. Med Oncol, 2011,28(4):1577–1583
    Article CAS PubMed Google Scholar
  18. Shirwaikar A, Shirwaikar A, Rajendran K, et al. In vitro antioxidant studies on the benzyl tetra isoquinoline alkaloid berberine. Biol Pharm Bull, 2006,29(9):1906–1910
    Article CAS PubMed Google Scholar
  19. Li Y, Wang P, Zhuang Y, et al. Activation of AMPK by berberine promotes adiponectin multimerization in 3T3-L1 adipocytes. FEBS Letters, 2011,585(12):1735–1740
    Article CAS PubMed Google Scholar
  20. Yi P, Lu FE, Xu LJ, et al. Berberine reverses free-fatty-acid-induced insulin resistance in 3T3-L1 adipocytes through targeting IKKbeta. World J Gastroenterol, 2008,14(6):876–883
    Article PubMed Central CAS PubMed Google Scholar
  21. Kim SH, Shin EJ, Kim ED, et al. Berberine activates GLUT1-mediated glucose uptake in 3T3-L1 adipocytes. Biol Pharm Bull, 2007,30(11):2120–2125
    Article CAS PubMed Google Scholar
  22. Yin J, Gao Z, Liu D, et al. Berberine improves glucose metabolism through induction of glycolysis. Am J Physiol Endocrinol Metab, 2008,294(1):E148–E156
    Article PubMed Central CAS PubMed Google Scholar
  23. Zhang H, Wei J, Xue R, et al. Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression. Metabolism, 2010,59(2):285–292
    Article PubMed Google Scholar
  24. Yang J, Yin J, Gao H, et al. Berberine improves insulin sensitivity by inhibiting fat store and adjusting adipokines profile in human preadipocytes and metabolic syndrome patients. Evid Based Complement Alternat Med, 2012,2012:363845
    PubMed Central PubMed Google Scholar
  25. Kim DK, Lee KT, Baek NI, et al. Acetylcholinesterase inhibitors from the aerial parts of Corydalis speciosa. Arch Pharm Res, 2004,27(11):1127–1131
    Article CAS PubMed Google Scholar
  26. Zhang WY, Lee JJ, Kim Y, et al. Amelioration of insulin resistance by scopoletin in high-glucose-induced, insulin-resistant HepG2 cells. Horm Metab Res, 2010,42(13):930–935
    Article CAS PubMed Google Scholar
  27. Renstrom F, Buren J, Svensson M, et al. Insulin resistance induced by high glucose and high insulin precedes insulin receptor substrate 1 protein depletion in human adipocytes. Metabolism, 2007,56(2):190–198
    Article PubMed Google Scholar
  28. Zou C, Wang Y, Shen Z. 2-NBDG as a fluorescent indicator for direct glucose uptake measurement. J Biochem Bioph Meth, 2005,64(3):207–215
    Article CAS Google Scholar
  29. Zhang S, Xiao Q, Le W. Olfactory dysfunction and neurotransmitter disturbance in olfactory bulb of transgenic mice expressing human A53T mutant a-synuclein. PLoS One, 2015,10(3):e119928
    Google Scholar
  30. Ellman GL, Courtney KD, Andres VJ, et al. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol, 1961,7:88–95
    Article CAS PubMed Google Scholar
  31. Delhase M, Hayakawa M, Chen Y, et al. Positive and negative regulation of IkappaB kinase activity through IKKbeta subunit phosphorylation. Science, 1999,284 (5412):309–313
    Article CAS PubMed Google Scholar
  32. Wang H, Yu M, Ochani M, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature, 2003,421(6921):384–388
    Article CAS PubMed Google Scholar
  33. Jeong H W, Hsu K C, Lee J W, et al. Berberine suppresses proinflammatory responses through AMPK activation in macrophages. Am J Physiol Endocrinol Metab, 2009,296(4):E955–E964
    Article CAS PubMed Google Scholar
  34. Wang C, Tan Z, Zou X, et al. Inhibiting effect of berberine hydrochloride on ache: a biological information and biological effect study. Acta Med Univ Sci Technol Huazhong (Chinese), 2014,43(5):561–563
    CAS Google Scholar
  35. Lykhmus O, Voytenko L, Koval L, et al. Alpha7 Nicotinic acetylcholine receptor-specific antibody induces inflammation and amyloid beta42 accumulation in the mouse brain to impair memory. PLoS one, 2015,10(3):e122706
    Article Google Scholar
  36. Wang H, Yu M, Ochani M, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature, 2003,421(6921):384–388
    Article CAS PubMed Google Scholar
  37. Tracey KJ. Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest, 2007,117(2): 289–296
    Article PubMed Central CAS PubMed Google Scholar
  38. Yi L, Luo JF, Xie BB, et al. a7 nicotinic acetylcholine receptor is a novel mediator of sinomenine anti-inflammation effect in macrophages stimulated by lipopolysaccharide. Shock, 2015,44(2):188–195
    Article CAS PubMed Google Scholar
  39. Li ZW, Chu W, Hu Y, et al. The IKKbeta subunit of IkappaB kinase (IKK) is essential for nuclear factor kappaB activation and prevention of apoptosis. J Exp Med, 1999,189(11):1839–1845
    Article PubMed Central CAS PubMed Google Scholar
  40. Tak PP, Firestein GS. NF-kappaB: a key role in inflammatory diseases. J Clin Invest, 2001,107(1):7–11
    Article PubMed Central CAS PubMed Google Scholar

Download references