Berberine relieves insulin resistance via the cholinergic anti-inflammatory pathway in HepG2 cells (original) (raw)
References
Akash MSH, Rehman K, Chen S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J Cell Biochem, 2013,114(3):525–531 ArticleCASPubMed Google Scholar
Bergman RN, Finegood DT, Kahn SE. The evolution of beta-cell dysfunction and insulin resistance in type 2 diabetes. Eur J Clin Invest, 2002,32(Suppl 3):35–45 ArticleCASPubMed Google Scholar
Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 2006,444(7121):840–846 ArticleCASPubMed Google Scholar
Soumaya K. Molecular mechanisms of insulin resistance in diabetes. Adv Exp Med Biol, 2012,771:240–251 PubMed Google Scholar
Bullo M, Garcia-Lorda P, Megias I, et al. Systemic inflammation, adipose tissue tumor necrosis factor, and leptin expression. Obes Res, 2003,11(4):525–531 ArticleCASPubMed Google Scholar
King GL. The role of inflammatory cytokines in diabetes and its complications. J Periodontol, 2008,79(8s):1527–1534 ArticleCASPubMed Google Scholar
Hirabara SM, Gorjão R, Vinolo MA, et al. Molecular targets related to inflammation and insulin resistance and potential interventions. J Biomed Biotechnol, 2012,2012: 1–16 Article Google Scholar
Bencherif M, Lippiello PM, Lucas R, et al. Alpha7 nicotinic receptors as novel therapeutic targets for inflammation-based diseases. Cell Mol Life Sci, 2011,68(6):931–949 ArticlePubMed CentralCASPubMed Google Scholar
Wang DW, Zhou RB, Yao YM. Role of cholinergic anti-inflammatory pathway in regulating host response and its interventional strategy for inflammatory diseases. Chin J Traumatol, 2009,12(6):355–364 CASPubMed Google Scholar
van Westerloo DJ. The vagal immune reflex: a blessing from above. Wien Med Wochenschr, 2010,160(5–6): 112–117 ArticlePubMed Google Scholar
Hofer S, Eisenbach C, Lukic IK, et al. Pharmacologic cholinesterase inhibition improves survival in experimental sepsis. Crit Care Med, 2008,36(2):404–408 ArticleCASPubMed Google Scholar
Wang H, Yu M, Ochani M, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature, 2003,421(6921):384–388 ArticleCASPubMed Google Scholar
Marrero MB, Lucas R, Salet C, et al. An alpha7 nicotinic acetylcholine receptor-selective agonist reduces weight gain and metabolic changes in a mouse model of diabetes. J Pharmacol Exp Ther, 2010,332(1):173–180 ArticleCASPubMed Google Scholar
Pazhang Y, Ahmadian S, Mahmoudian M, et al. Berberine-induced apoptosis via decreasing the survivin protein in K562 cell line. Med Oncol, 2011,28(4):1577–1583 ArticleCASPubMed Google Scholar
Shirwaikar A, Shirwaikar A, Rajendran K, et al. In vitro antioxidant studies on the benzyl tetra isoquinoline alkaloid berberine. Biol Pharm Bull, 2006,29(9):1906–1910 ArticleCASPubMed Google Scholar
Li Y, Wang P, Zhuang Y, et al. Activation of AMPK by berberine promotes adiponectin multimerization in 3T3-L1 adipocytes. FEBS Letters, 2011,585(12):1735–1740 ArticleCASPubMed Google Scholar
Yi P, Lu FE, Xu LJ, et al. Berberine reverses free-fatty-acid-induced insulin resistance in 3T3-L1 adipocytes through targeting IKKbeta. World J Gastroenterol, 2008,14(6):876–883 ArticlePubMed CentralCASPubMed Google Scholar
Kim SH, Shin EJ, Kim ED, et al. Berberine activates GLUT1-mediated glucose uptake in 3T3-L1 adipocytes. Biol Pharm Bull, 2007,30(11):2120–2125 ArticleCASPubMed Google Scholar
Yin J, Gao Z, Liu D, et al. Berberine improves glucose metabolism through induction of glycolysis. Am J Physiol Endocrinol Metab, 2008,294(1):E148–E156 ArticlePubMed CentralCASPubMed Google Scholar
Zhang H, Wei J, Xue R, et al. Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression. Metabolism, 2010,59(2):285–292 ArticlePubMed Google Scholar
Yang J, Yin J, Gao H, et al. Berberine improves insulin sensitivity by inhibiting fat store and adjusting adipokines profile in human preadipocytes and metabolic syndrome patients. Evid Based Complement Alternat Med, 2012,2012:363845 PubMed CentralPubMed Google Scholar
Kim DK, Lee KT, Baek NI, et al. Acetylcholinesterase inhibitors from the aerial parts of Corydalis speciosa. Arch Pharm Res, 2004,27(11):1127–1131 ArticleCASPubMed Google Scholar
Zhang WY, Lee JJ, Kim Y, et al. Amelioration of insulin resistance by scopoletin in high-glucose-induced, insulin-resistant HepG2 cells. Horm Metab Res, 2010,42(13):930–935 ArticleCASPubMed Google Scholar
Renstrom F, Buren J, Svensson M, et al. Insulin resistance induced by high glucose and high insulin precedes insulin receptor substrate 1 protein depletion in human adipocytes. Metabolism, 2007,56(2):190–198 ArticlePubMed Google Scholar
Zou C, Wang Y, Shen Z. 2-NBDG as a fluorescent indicator for direct glucose uptake measurement. J Biochem Bioph Meth, 2005,64(3):207–215 ArticleCAS Google Scholar
Zhang S, Xiao Q, Le W. Olfactory dysfunction and neurotransmitter disturbance in olfactory bulb of transgenic mice expressing human A53T mutant a-synuclein. PLoS One, 2015,10(3):e119928 Google Scholar
Ellman GL, Courtney KD, Andres VJ, et al. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol, 1961,7:88–95 ArticleCASPubMed Google Scholar
Delhase M, Hayakawa M, Chen Y, et al. Positive and negative regulation of IkappaB kinase activity through IKKbeta subunit phosphorylation. Science, 1999,284 (5412):309–313 ArticleCASPubMed Google Scholar
Wang H, Yu M, Ochani M, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature, 2003,421(6921):384–388 ArticleCASPubMed Google Scholar
Jeong H W, Hsu K C, Lee J W, et al. Berberine suppresses proinflammatory responses through AMPK activation in macrophages. Am J Physiol Endocrinol Metab, 2009,296(4):E955–E964 ArticleCASPubMed Google Scholar
Wang C, Tan Z, Zou X, et al. Inhibiting effect of berberine hydrochloride on ache: a biological information and biological effect study. Acta Med Univ Sci Technol Huazhong (Chinese), 2014,43(5):561–563 CAS Google Scholar
Lykhmus O, Voytenko L, Koval L, et al. Alpha7 Nicotinic acetylcholine receptor-specific antibody induces inflammation and amyloid beta42 accumulation in the mouse brain to impair memory. PLoS one, 2015,10(3):e122706 Article Google Scholar
Wang H, Yu M, Ochani M, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature, 2003,421(6921):384–388 ArticleCASPubMed Google Scholar
Yi L, Luo JF, Xie BB, et al. a7 nicotinic acetylcholine receptor is a novel mediator of sinomenine anti-inflammation effect in macrophages stimulated by lipopolysaccharide. Shock, 2015,44(2):188–195 ArticleCASPubMed Google Scholar
Li ZW, Chu W, Hu Y, et al. The IKKbeta subunit of IkappaB kinase (IKK) is essential for nuclear factor kappaB activation and prevention of apoptosis. J Exp Med, 1999,189(11):1839–1845 ArticlePubMed CentralCASPubMed Google Scholar