Mesenchymal Stem Cells for Cardiac Therapy: Practical Challenges and Potential Mechanisms (original) (raw)
References
Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147. ArticleCASPubMed Google Scholar
Song, L., & Tuan, R. S. (2004). Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. The FASEB Journal, 18, 980–982. CAS Google Scholar
Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., et al. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418, 41–49. ArticleCASPubMed Google Scholar
Hare, J. M., Traverse, J. H., Henry, T. D., et al. (2009). A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. Journal of the American College of Cardiology, 54, 2277–2286. ArticleCASPubMed Google Scholar
Li, Y., Yao, Y., Sheng, Z., Yang, Y., & Ma, G. (2011). Dual-modal tracking of transplanted mesenchymal stem cells after myocardial infarction. International Journal of Nanomedicine, 6, 815–823. ArticleCASPubMed Google Scholar
Williams, A. R., Trachtenberg, B., Velazquez, D. L., et al. (2011). Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling. Circulation Research, 108, 792–796. ArticleCASPubMed Google Scholar
Quevedo, H. C., Hatzistergos, K. E., Oskouei, B. N., et al. (2009). Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proceedings of the National Academy of Sciences of the United States of America, 106, 14022–14027. ArticleCASPubMed Google Scholar
Amado, L. C., Saliaris, A. P., Schuleri, K. H., et al. (2005). Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 102, 11474–11479. ArticleCASPubMed Google Scholar
Miyahara, Y., Nagaya, N., Kataoka, M., et al. (2006). Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nature Medicine, 12, 459–465. ArticleCASPubMed Google Scholar
Koninckx, R., Hensen, K., Daniëls, A., et al. (2009). Human bone marrow stem cells co-cultured with neonatal rat cardiomyocytes display limited cardiomyogenic plasticity. Cytotherapy, 11, 778–792. ArticleCASPubMed Google Scholar
Ranganath, S. H., Levy, O., Inamdar, M. S., & Karp, J. M. (2012). Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell, 10, 244–258. ArticleCASPubMed Google Scholar
Friis, T., Haack-Sørensen, M., Mathiasen, A. B., et al. (2011). Mesenchymal stromal cell derived endothelial progenitor treatment in patients with refractory angina. Scandinavian Cardiovascular Journal, 45, 161–168. ArticlePubMed Google Scholar
Penn, M. S., Ellis, S., Gandhi, S., et al. (2012). Adventitial delivery of an allogeneic bone marrow-derived adherent stem cell in acute myocardial infarction: phase I clinical study. Circulation Research, 110, 304–311. ArticleCASPubMed Google Scholar
Lunde, K., Solheim, S., Aakhus, S., et al. (2006). Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. The New England Journal of Medicine, 355, 1199–1209. ArticleCASPubMed Google Scholar
Wollert, K. C., Meyer, G. P., Lotz, J., et al. (2004). Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet, 364, 141–148. ArticlePubMed Google Scholar
Schaefer, A., Zwadlo, C., Fuchs, M., et al. (2010). Long-term effects of intracoronary bone marrow cell transfer on diastolic function in patients after acute myocardial infarction: 5-year results from the randomized-controlled BOOST trial–an echocardiographic study. European Journal of Echocardiography, 11, 165–171. ArticlePubMed Google Scholar
Meyer, G. P., Wollert, K. C., Lotz, J., et al. (2009). Intracoronary bone marrow cell transfer after myocardial infarction: 5-year follow-up from the randomized-controlled BOOST trial. European Heart Journal, 30, 2978–2984. ArticlePubMed Google Scholar
Meyer, G. P., Wollert, K. C., Lotz, J., et al. (2006). Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation, 113, 1287–1294. ArticlePubMed Google Scholar
Dai, W., Hale, S. L., Martin, B. J., et al. (2005). Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation, 112, 214–223. ArticlePubMed Google Scholar
Wen, Y., Meng, L., Xie, J., & Ouyang, J. (2011). Direct autologous bone marrow-derived stem cell transplantation for ischemic heart disease: a meta-analysis. Expert Opinion on Biological Therapy, 11, 559–567. ArticlePubMed Google Scholar
Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317. ArticleCASPubMed Google Scholar
Acquistapace, A., Bru, T., Lesault, P.-F., et al. (2011). Human mesenchymal stem cells reprogram adult cardiomyocytes toward a progenitor-like state through partial cell fusion and mitochondria transfer. Stem Cells, 29, 812–824. ArticleCASPubMed Google Scholar
Gaebel, R., Furlani, D., Sorg, H., et al. (2011). Cell origin of human mesenchymal stem cells determines a different healing performance in cardiac regeneration. PloS One, 6, e15652. ArticleCASPubMed Google Scholar
Bayes-Genis, A., Soler-Botija, C., Farré, J., et al. (2010). Human progenitor cells derived from cardiac adipose tissue ameliorate myocardial infarction in rodents. Journal of Molecular and Cellular Cardiology, 49, 771–780. ArticleCASPubMed Google Scholar
Zhao, Z., Chen, Z., Zhao, X., et al. (2011). Sphingosine-1-phosphate promotes the differentiation of human umbilical cord mesenchymal stem cells into cardiomyocytes under the designated culturing conditions. Journal of Biomedical Science, 18, 37. ArticleCASPubMed Google Scholar
Zvaifler, N. J., Marinova-Mutafchieva, L., Adams, G., et al. (2000). Mesenchymal precursor cells in the blood of normal individuals. Arthritis Research, 2, 477–488. ArticleCASPubMed Google Scholar
Kurth, T. B., Dell’accio, F., Crouch, V., Augello, A., Sharpe, P. T., & De Bari, C. (2011). Functional mesenchymal stem cell niches in adult mouse knee joint synovium in vivo. Arthritis and Rheumatism, 63, 1289–1300. ArticlePubMed Google Scholar
Tsuji, H., Miyoshi, S., Ikegami, Y., et al. (2010). Xenografted human amniotic membrane-derived mesenchymal stem cells are immunologically tolerated and transdifferentiated into cardiomyocytes. Circulation Research, 106, 1613–1623. ArticleCASPubMed Google Scholar
Sabatini, F., Petecchia, L., Tavian, M., Jodon de Villeroché, V., Rossi, G. A., & Brouty-Boyé, D. (2005). Human bronchial fibroblasts exhibit a mesenchymal stem cell phenotype and multilineage differentiating potentialities. Laboratory Investigation, 85, 962–971. ArticleCASPubMed Google Scholar
Kawada, H., Fujita, J., Kinjo, K., et al. (2004). Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood, 104, 3581–3587. ArticleCASPubMed Google Scholar
Peister, A., Mellad, J. A., Larson, B. L., Hall, B. M., Gibson, L. F., & Prockop, D. J. (2004). Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood, 103, 1662–1668. ArticleCASPubMed Google Scholar
Bonios, M., Terrovitis, J., Chang, C. Y., et al. (2011). Myocardial substrate and route of administration determine acute cardiac retention and lung bio-distribution of cardiosphere-derived cells. Journal of Nuclear Cardiology, 18, 443–450. ArticlePubMed Google Scholar
Dib, N., Khawaja, H., Varner, S., McCarthy, M., & Campbell, A. (2011). Cell therapy for cardiovascular disease: a comparison of methods of delivery. Journal of Cardiovascular Translational Research, 4, 177–181. ArticlePubMed Google Scholar
Wei, F., Wang, T., Liu, J., Du, Y., & Ma, A. (2011). The subpopulation of mesenchymal stem cells that differentiate toward cardiomyocytes is cardiac progenitor cells. Experimental Cell Research, 317, 2661–2670. ArticleCASPubMed Google Scholar
Hatzistergos, K. E., Quevedo, H., Oskouei, B. N., et al. (2010). Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circulation Research, 107, 913–922. ArticleCASPubMed Google Scholar
Numasawa, Y., Kimura, T., Miyoshi, S., et al. (2011). Treatment of human mesenchymal stem cells with angiotensin receptor blocker improved efficiency of cardiomyogenic transdifferentiation and improved cardiac function via angiogenesis. Stem Cells, 29, 1405–1414. CASPubMed Google Scholar
Siegel. G., Krause, P., Wöhrle, S., et al. (2012). Bone marrow-derived human mesenchymal stem cells express cardiomyogenic proteins but do not exhibit functional cardiomyogenic differentiation potential. Stem Cells and Development, -not available-, ahead of print.
Sassoli, C., Pini, A., Mazzanti, B., et al. (2011). Mesenchymal stromal cells affect cardiomyocyte growth through juxtacrine Notch-1/Jagged-1 signaling and paracrine mechanisms: clues for cardiac regeneration. Journal of Molecular and Cellular Cardiology, 51, 399–408. ArticleCASPubMed Google Scholar
Boni, A., Urbanek, K., Nascimbene, A., et al. (2008). Notch1 regulates the fate of cardiac progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 15529–15534. ArticleCASPubMed Google Scholar
Abarbanell, A. M., Wang, Y., Herrmann, J. L., et al. (2010). Toll-like receptor 2 mediates mesenchymal stem cell-associated myocardial recovery and VEGF production following acute ischemia-reperfusion injury. American Journal of Physiology: Heart and Circulatory Physiology, 298, H1529–36. ArticleCASPubMed Google Scholar
Varoga, D., Paulsen, F., Mentlein, R., et al. (2006). TLR-2-mediated induction of vascular endothelial growth factor (VEGF) in cartilage in septic joint disease. Journal of Pathology, 210, 315–324. ArticleCASPubMed Google Scholar
Williams, A. R., & Hare, J. M. (2011). Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circulation Research, 109, 923–940. ArticleCASPubMed Google Scholar
Xu, H., Yang, Y.-J., Qian, H.-Y., Tang, Y.-D., Wang, H., & Zhang, Q. (2011). Rosuvastatin treatment activates JAK-STAT Pathway and increases efficacy of allogeneic mesenchymal stem cell transplantation in infarcted hearts. Circulation Journal, 75, 1476–1485. ArticleCASPubMed Google Scholar
Loffredo, F. S., Steinhauser, M. L., Gannon, J., & Lee, R. T. (2011). Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell Stem Cell, 8, 389–398. ArticleCASPubMed Google Scholar
Zisa, D., Shabbir, A., Suzuki, G., & Lee, T. (2009). Vascular endothelial growth factor (VEGF) as a key therapeutic trophic factor in bone marrow mesenchymal stem cell-mediated cardiac repair. Biochemical and Biophysical Research Communications, 390, 834–838. ArticleCASPubMed Google Scholar
Valiunas, V., Doronin, S., Valiuniene, L., et al. (2004). Human mesenchymal stem cells make cardiac connexins and form functional gap junctions. The Journal of Physiology, 555, 617–626. ArticleCASPubMed Google Scholar
Mills, W. R., Mal, N., Kiedrowski, M. J., et al. (2007). Stem cell therapy enhances electrical viability in myocardial infarction. Journal of Molecular and Cellular Cardiology, 42, 304–314. ArticleCASPubMed Google Scholar
Serrao, G.S., Turnbull, I.C., Ancukiewicz, D., et al. (2012). Myocyte-Depleted Engineered Cardiac Tissue Support Therapeutic Potential of Mesenchymal Stem Cells. Tissue Engineering Part A, doi:10.1089/ten.TEA.2011.0278.
Chang, M. G., Tung, L., Sekar, R. B., et al. (2006). Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model. Circulation, 113, 1832–1841. ArticlePubMed Google Scholar
Costa, A. R., Panda, N. C., Yong, S., et al. (2012). Optical mapping of cryoinjured rat myocardium grafted with mesenchymal stem cells. American Journal of Physiology: Heart and Circulatory Physiology, 302, H270–7. ArticleCASPubMed Google Scholar
Ramkisoensing, A. A., Pijnappels, D. A., Askar, S. F. A., et al. (2011). Human embryonic and fetal mesenchymal stem cells differentiate toward three different cardiac lineages in contrast to their adult counterparts. PloS One, 6, e24164. ArticleCASPubMed Google Scholar
Hwang, N. S., Kim, M. S., Sampattavanich, S., Baek, J. H., Zhang, Z., & Elisseeff, J. (2006). Effects of three-dimensional culture and growth factors on the chondrogenic differentiation of murine embryonic stem cells. Stem Cells, 24, 284–291. ArticleCASPubMed Google Scholar
Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126, 677–689. ArticleCASPubMed Google Scholar
Engler, A. J., Carag-Krieger, C., Johnson, C. P., et al. (2008). Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. Journal of Cell Science, 121, 3794–3802. ArticleCASPubMed Google Scholar
Jacot, J. G., McCulloch, A. D., & Omens, J. H. (2008). Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophysical Journal, 95, 3479–3487. ArticleCASPubMed Google Scholar
Domian, I. J., Chiravuri, M., van der Meer, P., et al. (2009). Generation of functional ventricular heart muscle from mouse ventricular progenitor cells. Science, 326, 426–429. ArticleCASPubMed Google Scholar
Tulloch, N. L., Muskheli, V., Razumova, M. V., et al. (2011). Growth of engineered human myocardium with mechanical loading and vascular coculture. Circulation Research, 109, 47–59. ArticleCASPubMed Google Scholar
Schaaf, S., Shibamiya, A., Mewe, M., et al. (2011). Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology. PloS One, 6, e26397. ArticleCASPubMed Google Scholar
Chen, C.-H., Wei, H.-J., Lin, W.-W., et al. (2008). Porous tissue grafts sandwiched with multilayered mesenchymal stromal cell sheets induce tissue regeneration for cardiac repair. Cardiovascular Research, 80, 88–95. ArticleCASPubMed Google Scholar
Simpson, D. L., Boyd, N. L., Kaushal, S., Stice, S. L., & Dudley, S. C. (2012). Use of human embryonic stem cell derived-mesenchymal cells for cardiac repair. Biotechnology and Bioengineering, 109, 274–283. ArticleCASPubMed Google Scholar