Inhibition of proliferation in colon cancer cell lines and harmful enzyme activity of colon bacteria by Bifidobacterium adolescentis SPM0212 (original) (raw)
References
Ashkenazi, A. and Dixit, V. M., Death receptors: signaling and modulation. Science, 287, 1305–1308 (1998). Article Google Scholar
Choi, S. S., Kang, B. Y., Chung, M. J., Kim, S. D., Park, S. H., Kim, J. S., Kang, C. Y., and Ha, N. J., Safety assessment of potential lactic acid bacteria Bifidobacterium longum SPM1205 isolated from healthy Koreans. J. Microbiol., 43, 493–498 (2005). PubMedCAS Google Scholar
de la Chapelle, A., Genetic predisposition to colorectal cancer. Nat. Rev. Cancer, 4, 769–780 (2004). ArticlePubMedCAS Google Scholar
Fernandes, C. F. and Shahani, K. M., Anticarcinogenic and immunological properties of dietary lactobacilli. J. Food Prot., 53, 704–710 (1990). Google Scholar
Goldin, B. R. and Gorbach, S. L., The relationship between diet and rat fecal bacterial enzymes. J. Natl. Cancer Inst, 57, 371–375 (1976). PubMedCAS Google Scholar
Gomez, E., Melar, M. M., Silva, G. P., Portoles, A., and Gil, I., Exocellular products from Bifidobacterium adolescentis as immunomodifiers in the lymphoproliferative responses of mouse splenocytes. FEMS. Microbiol. Lett., 56, 47–52 (1998). Article Google Scholar
Greenlee, R. T., Hill-Harmon, M. B., Murray, T., and Thun, M., Cancer statistics. CA Cancer J. Clin, 51, 144 (2001). Google Scholar
Kado-Oka, Y., Fujiwara, S., and Hirota, T., Effects of bifidobacteria cells on mitogenic response of splenocytes and several functions of phagocytes. Milchwissenshaft, 46, 626–630 (1991). Google Scholar
Kim, D. H., Kang, H. J., Kim, S. W., and Kobayashi, K., pH-inducible β-glucuronidase and β-glucosidase of intestinal bacteria. Chem. Pharm. Bull., 40, 1967–1969 (1992). Google Scholar
Kim, D. H., Lee, J. H., Bae, E. A., and Han, M. J., Induction and inhibition of indole of intestinal bacteria. Arch. Pharm. Res., 18, 351–355 (1995). ArticleCAS Google Scholar
Lee, J., Ametani, A., Enomoto, A., Sato, Y., Motoshima, H., Ike, R., and Kaminogawa, S., Screening for the immunopotentiating activity of food microorganisms and enhancement of the immune response by Bifidobacterium adolescentis M101-4, Biosci. Biotech. Biochem., 57, 2127–2132 (1993). CAS Google Scholar
Maclennan, R. and Jensen, O. M., Dietary fibre, transit time, fecal bacteria, steroids and colon cancer in two Scandiavian populations. Lancet, 30, 207–211 (1977). Google Scholar
Malhotra, S. L., Dietary factors in a study of colon cancer from Cancer Registry, with special reference to the role of saliva, milk and fermented milk products and vegetable fibre. Med. Hypotheses, 3, 122–126 (1977). ArticlePubMedCAS Google Scholar
Manjunath, N. and Ranganathan, B., A cytotoxic substance produced by a wild culture of Lactobacillus casei D-34 against tumor cells. Indian J. Exp. Biol., 27, 141–145 (1989). PubMedCAS Google Scholar
Natoli, G., Costanzo, A., Guido, F., Moretti, F., and Lovreto, M., Apoptotic, non-apoptotic and anti-apoptotic pathways of TNF signaling. Biochem. Pharmacol., 56, 915–920 (1998). ArticlePubMedCAS Google Scholar
Oda, M., Hasegawa, H., Komatsu, S., Kambe, M., and Tsuchiya, F., Anti-tumor polysaccharide from Lactobacillus sp. Agric. Biol. Chem., 47, 1623–1625 (1983). CAS Google Scholar
Pisani, P., Parkin, D. M., and Ferlay, J., Estimates of the worldwide mortality from eighteen major cancers in 1985. Int. J. Cancer, 54, 594–606 (1993). ArticlePubMed Google Scholar
Rafter, J. J., The role of lactic acid bacteria in colon cancer prevention. Scand. J. Gastroenterol., 30, 497–502 (1995). ArticlePubMedCAS Google Scholar
Reddy, B. S., Nutritional factors and colon cancer. Crit. Rev. Fd. Sci. Nutr., 35, 175–190 (1995). ArticleCAS Google Scholar
Reddy, B. S. and Wynder, E., Metabolic epidemiology of colorectal cancer: fecal bile acids and neutral steroids in colon cancer patients with adenomatous polyps. Cancer, 39, 2533–2539 (1977). ArticlePubMedCAS Google Scholar
Scardovi, V., Genus Bifidobacterium, p. 1418–1434. In N.R. Krieg and J. G. Holt (ed.), Bergey’s Manual of Systemic Bacteriology, vol. 2, Williams & Willikins, MD (1986). Google Scholar
Sekine, K., Ohta, J., Onishi, M., Tatsuki, T., Shimokawa, Y., Toida, T., Kawashima, T., and Hashimoto, Y., Analysis of antitumor properties of effector cells stimulated with a cell wall preparation (WPG) of Bifidobacterium infantis. Biol. Pharm. Bull., 18, 148–153 (1995). PubMedCAS Google Scholar
Sekine, K., Watanabe-Sekine, E., Toida, T., Kasashima, T., Kataoka, T., and Hashimoto, Y., Adjuvant activity of the cell wall of Bifidobacterium infantis for in vivo immune responses in mice. Immunopharmacol. Immunotoxicol., 16, 589–609 (1994). ArticlePubMedCAS Google Scholar
Shahani, K. M. and Ayebo, A. D., Role of dietary lactobacilli in gastrointestinal microecology. Am. J. Clin. Nutr., 33, 2448–2457 (1980). PubMedCAS Google Scholar
van Faassen, A., Bol, J., van den Brandt, van den Bogaard, Hermus, R. J. J., and Janknegt, R. A., Bile acids and pH values in total feces and fecal water from habitually omnivorous and vegetarian subjects. Am. J. Clin. Nutr., 58, 917–922 (1993). PubMed Google Scholar
Lee, W. K. and Lee, S. M., Inhibition effects of Lactic acid bacteria (LAB) on the Azoxymethance-induced colonic preneoplastic lesions. J. Microbiol., 38, 169–175 (2000). Google Scholar
Williams, R. T., Toxicological implications of biotransformation by intestinal microflora. Toxicol. Appl. Pharmacol., 23, 769–781 (1972). ArticlePubMedCAS Google Scholar