Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair (original) (raw)

References

  1. van Gent, D. C., Hoeijmakers, J. H. & Kanaar, R. Chromosomal stability and the DNA double-stranded break connection. Nature Rev. Genet. 2, 196–206 (2001).
    Article CAS Google Scholar
  2. Lieber, M. R. The biochemistry and biological significance of nonhomologous DNA end joining: an essential repair process in multicellular eukaryotes. Genes Cells 4, 77–85 (1999).
    Article CAS Google Scholar
  3. Critchlow, S. E. & Jackson, S. P. DNA end-joining: from yeast to man. Trends Biochem. Sci. 23, 394–398 (1998).
    Article CAS Google Scholar
  4. Haber, J. E. Partners and pathways: repairing a double-strand break. Trends Genet. 16, 259–264 (2000).
    Article CAS Google Scholar
  5. Gottlieb, T. M. & Jackson, S. P. The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 72, 131–142 (1993).
    Article CAS Google Scholar
  6. Smith, G. C. & Jackson, S. P. The DNA-dependent protein kinase. Genes Dev. 13, 916–934 (1999).
    Article CAS Google Scholar
  7. Boulton, S. J. & Jackson, S. P. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J. 15, 5093–5103 (1996).
    Article CAS Google Scholar
  8. Liang, F. & Jasin, M. Ku80-deficient cells exhibit excess degradation of extrachromosomal DNA. J. Biol. Chem. 271, 14405–14411 (1996).
    Article CAS Google Scholar
  9. Feldmann, E., Schmiemann, V., Goedecke, W., Reichenberger, S. & Pfeiffer, P. DNA double-strand break repair in cell-free extracts from Ku80-deficient cells: implications for Ku serving as an alignment factor in non-homologous DNA end joining. Nucleic Acids Res. 28, 2585–2596 (2000).
    Article CAS Google Scholar
  10. Chen, S. et al. Accurate in vitro end-joining of a DNA double-strand break with partially cohesive 3′-overhangs and 3′-phosphoglycolate termini: effect of Ku on repair fidelity. J. Biol. Chem. 276, 24323–24330 (2001).
    Article CAS Google Scholar
  11. Taccioli, G. E. et al. Ku80: product of the XRCC5 gene and its role in DNA repair and V(D)J recombination. Science 265, 1442–1445 (1994).
    Article CAS Google Scholar
  12. Zhu, C., Bogue, M. A., Lim, D. S., Hasty, P. & Roth, D. B. Ku86-deficient mice exhibit severe combined immunodeficiency and defective processing of V(D)J recombination intermediates. Cell 86, 379–389 (1996).
    Article CAS Google Scholar
  13. Nussenzweig, A., Sokol, K., Burgman, P., Li, L. & Li, G. C. Hypersensitivity of Ku80-deficient cell lines and mice to DNA damage: the effects of ionizing radiation on growth, survival, and development. Proc. Natl Acad. Sci. USA 94, 13588–13593 (1997).
    Article CAS Google Scholar
  14. Gu, Y., Jin, S., Gao, Y., Weaver, D. T. & Alt, F. W. Ku70-deficient embryonic stem cells have increased ionizing radiosensitivity, defective DNA end-binding activity, and inability to support V(D)J recombination. Proc. Natl Acad. Sci. USA 94, 8076–8081 (1997).
    Article CAS Google Scholar
  15. Difilippantonio, M. J. et al. DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature 404, 510–514 (2000).
    Article CAS Google Scholar
  16. Ferguson, D. O. et al. The nonhomologous end-joining pathway of DNA repair is required for genomic stability and the suppression of translocations. Proc. Natl Acad. Sci. USA 97, 6630–6633 (2000).
    Article CAS Google Scholar
  17. Roth, D. B. & Wilson, J. H. Nonhomologous recombination in mammalian cells: role for short sequence homologies in the joining reaction. Mol. Cell. Biol. 6, 4295–4304 (1986).
    Article CAS Google Scholar
  18. Thode, S., Schafer, A., Pfeiffer, P. & Vielmetter, W. A novel pathway of DNA end-to-end joining. Cell 60, 921–928 (1990).
    Article CAS Google Scholar
  19. Cary, R. B. et al. DNA looping by Ku and the DNA-dependent protein kinase. Proc. Natl Acad. Sci. USA 94, 4267–4272 (1997).
    Article CAS Google Scholar
  20. Ramsden, D. A. & Gellert, M. Ku protein stimulates DNA end joining by mammalian DNA ligases: a direct role for Ku in repair of DNA double-strand breaks. EMBO J. 17, 609–614 (1998).
    Article CAS Google Scholar
  21. Nick McElhinny, S. A., Snowden, C. M., McCarville, J. & Ramsden, D. A. Ku recruits the XRCC4-ligase IV complex to DNA ends. Mol. Cell. Biol. 20, 2996–3003 (2000).
    Article CAS Google Scholar
  22. Dynan, W. S. & Yoo, S. Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids. Nucleic Acids Res. 26, 1551–1559 (1998).
    Article CAS Google Scholar
  23. Baumann, P. & West, S. C. DNA end-joining catalyzed by human cell-free extracts. Proc. Natl Acad. Sci. USA 95, 14066–14070 (1998).
    Article CAS Google Scholar
  24. Paillard, S. & Strauss, F. Site-specific proteolytic cleavage of Ku protein bound to DNA. Proteins 15, 330–337 (1993).
    Article CAS Google Scholar
  25. Singleton, B. K., Torres-Arzayus, M. I., Rottinghaus, S. T., Taccioli, G. E. & Jeggo, P. A. The C terminus of Ku80 activates the DNA-dependent protein kinase catalytic subunit. Mol. Cell. Biol. 19, 3267–3277 (1999).
    Article CAS Google Scholar
  26. Yoo, S., Kimzey, A. & Dynan, W. S. Photocross-linking of an oriented DNA repair complex. Ku bound at a single DNA end. J. Biol. Chem. 274, 20034–20039 (1999).
    Article CAS Google Scholar
  27. Kong, X.-P., Onrust, R., O'Donnell, M. & Kuriyan, J. Three-dimensional structure of the β subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp. Cell 69, 425–437 (1992).
    Article CAS Google Scholar
  28. Gell, D. & Jackson, S. P. Mapping of protein-protein interactions within the DNA-dependent protein kinase complex. Nucleic Acids Res. 27, 3494–4502 (1999).
    Article CAS Google Scholar
  29. Aravind, L. & Koonin, E. V. SAP—a putative DNA-binding motif involved in chromosomal organization. Trends Biochem. Sci. 25, 112–114 (2000).
    Article CAS Google Scholar
  30. Ghosh, G., van Duyne, G., Ghosh, S. & Sigler, P. B. Structure of NF-kappa B p50 homodimer bound to a kappa B site. Nature 373, 303–310 (1995).
    Article CAS Google Scholar
  31. Muller, C. W., Rey, F. A., Sodeoka, M., Verdine, G. L. & Harrison, S. C. Structure of the NF-kappa B p50 homodimer bound to DNA. Nature 373, 311–317 (1995).
    Article CAS Google Scholar
  32. de Vries, E., van Driel, W., Bergsma, W. G., Arnberg, A. C. & van der Vliet, P. C. HeLa nuclear protein recognizing DNA termini and translocating on DNA forming a regular DNA-multimeric protein complex. J. Mol. Biol. 208, 65–78 (1989).
    Article CAS Google Scholar
  33. Zhao, J., Wang, J., Chen, D. J., Peterson, S. R. & Trewhella, J. The solution structure of the DNA double-stranded break repair protein Ku and its complex with DNA: a neutron contrast variation study. Biochemistry 38, 2152–2159 (1999).
    Article CAS Google Scholar
  34. Giffin, W. et al. Sequence-specific DNA binding by Ku autoantigen and its effects on transcription. Nature 380, 265–268 (1996).
    Article CAS Google Scholar
  35. Htun, H. & Dahlberg, J. E. Topology and formation of triple-stranded H-DNA. Science 243, 1571–1576 (1989).
    Article CAS Google Scholar
  36. Yoo, S. & Dynan, W. S. Geometry of a complex formed by double strand break repair proteins at a single DNA end: recruitment of DNA-PKcs induces inward translocation of Ku protein. Nucleic Acids Res. 27, 4679–4686 (1999).
    Article CAS Google Scholar
  37. Calsou, P. et al. The DNA-dependent protein kinase catalytic activity regulates DNA end processing by means of Ku entry into DNA. J. Biol. Chem. 274, 7848–7856 (1999).
    Article CAS Google Scholar
  38. Stewart, J., Hingorani, M. M., Kelman, Z. & O'Donnell, M. Mechanism of β clamp opening by the δ subunit of E. coli DNA polymerase III holoenzyme. J. Biol. Chem. 276, 19182–19189 (2001).
    Article CAS Google Scholar
  39. Chou, C. H., Wang, J., Knuth, M. W. & Reeves, W. H. Role of a major autoepitope in forming the DNA binding site of the p70 (Ku) antigen. J. Exp. Med. 175, 1677–1684 (1992).
    Article CAS Google Scholar
  40. Otwinoski, W. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).
    Article Google Scholar
  41. Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta. Crystallogr. D 55, 849–861 (1999).
    Article CAS Google Scholar
  42. Brünger, A. T. et al. Crystallography and NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).
    Article Google Scholar
  43. CCP4. The CCP4 suite: programs for X-ray crystallography. Acta Crystallogr. D 50, 760–763 (1994).
    Article Google Scholar
  44. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).
    Article CAS Google Scholar

Download references