Tidal effects of disconnected hydrocarbon seas on Titan (original) (raw)

Nature volume 374, pages 238–240 (1995)Cite this article

Abstract

THERMODYNAMIC and photochemical arguments1–4 suggest that Titan, the largest satellite of Saturn, has a deep ocean of liquid hydrocarbons. At visible wavelengths, Titan's surface is obscured by a thick stratospheric haze, but radar observations5–7 have revealed large regions of high surface reflectivity that are inconsistent with a global hydrocarbon ocean. Titan's surface has also been imaged at infrared wavelengths8–10, and the highest-resolution data (obtained by the Hubble Space Telescope) show clear variations in surface albedo and/or topography10. The natural interpretation of these observations is that Titan, like the Earth, has continents and oceans. But Titan's high orbital eccentricity poses a problem for this interpretation, as the effects of oceanic tidal friction would have circularized Titan's orbit for most configurations of oceans and continents1,11. Here we argue that a more realistic topography, in which liquid hydrocarbons are confined to a number of disconnected seas or crater lakes, may satisfy both the dynamical and observational constraints.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Sagan, C. & Dermott, S. F. Nature 300, 731–733 (1982).
    Article ADS Google Scholar
  2. Flasar, F. M. Science 221, 55–57 (1983).
    Article ADS CAS Google Scholar
  3. Lunine, J. I., Stevenson, D. J. & Yung, Y. K. Science 222, 1229–1230 (1983).
    Article ADS CAS Google Scholar
  4. Lunine, J. I. Rev. Geophys. 31, 133–149 (1993).
    Article ADS Google Scholar
  5. Muhleman, D. O., Grossman, A. W., Butler, B. J. & Slade, M. A. Science 248, 975–980 (1990).
    Article ADS CAS Google Scholar
  6. Muhleman, D. O., Grossman, A. W., Slade, M. A. & Butler, B. J. (abstr.) Bull. Am. astr. Soc. 24, 954–955 (1992).
    Google Scholar
  7. Grossman, A. W. & Muhleman, D. O. (abstr.) Bull. Am. astr. Soc. 24, 954 (1992).
    ADS Google Scholar
  8. Lemmon, M. T., Karkoschka, E. & Tomasko, M. Icarus 103, 329–332 (1993).
    Article ADS Google Scholar
  9. Griffith, C. A. Nature 364, 511–514 (1993).
    Article ADS Google Scholar
  10. Smith, P. H., Lemmon, M. T., Caldwell, J. J., Allison, M. D. & Sromovsky, L. A. (abstr.) Bull. Am. astr. Soc. 26, 1181 (1994).
    ADS Google Scholar
  11. Sears, W. D. (abstr.) Bull. Am. astr. Soc. 26, 1184 (1994); Icarus (in the press).
    ADS Google Scholar
  12. Lambeck, K. The Earth's Variable Rotation: Geophysical Causes and Consequences 295 (Cambridge Univ. Press, Cambridge, 1980).
    Book Google Scholar
  13. Webb, D. J. Contemp. Phys. 23, 419–442 (1982).
    Article ADS Google Scholar
  14. Burns, J. A. in Satellites (eds Burns, J. A. & Matthews, M. S.) 117–158 (Univ. Arizona Press, Tucson, 1986).
    Google Scholar
  15. Dermott, S. F. Icarus 37, 310–321 (1979).
    Article ADS Google Scholar
  16. Smith, B. A. et al. Science 212, 163–191 (1981).
    Article ADS CAS Google Scholar
  17. Engel, S., Hartmann, W. K. & Lunine, J. I. (abstr.) Bull. Am. astr. Soc. 26, 1183 (1994).
    ADS Google Scholar
  18. Merian, J. R. Über die Bewegung tropfbarer Flüssigkeiten in Gefässen (Basle, 1828).
    Google Scholar
  19. Turcotte, D. L. & Schubert, G. Geodynamics (Wiley, New York, 1982).
    Google Scholar
  20. Sagan, C. & Dermott, S. (abstr.) Bull. Am. astr. Soc. 26, 1183 (1994).
    ADS Google Scholar
  21. Chapman, C. R. & McKinnon, W. B. in Satellites (eds Burns, J. A. & Matthews, M. S.) 492–580 (Univ. Arizona Press, Tucson, 1986).
    Google Scholar
  22. Peale, S. J., Cassen, P. & Reynolds, R. T. Icarus 43, 65–72 (1980).
    Article ADS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Astronomy, University of Florida, PO Box 112055, Gainesville, Florida, 32611-2055, USA
    Stanley F. Dermott
  2. Laboratory for Planetary Studies, Cornell University, Ithaca, New York, 14853, USA
    Carl Sagan

Authors

  1. Stanley F. Dermott
    You can also search for this author inPubMed Google Scholar
  2. Carl Sagan
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Dermott, S., Sagan, C. Tidal effects of disconnected hydrocarbon seas on Titan.Nature 374, 238–240 (1995). https://doi.org/10.1038/374238a0

Download citation

This article is cited by