Differential activity of maternally and paternally derived chromosome regions in mice (original) (raw)

Nature volume 315, pages 496–498 (1985)Cite this article

Abstract

Although both parental sexes contribute equivalent genetic information to the zygote, in mammals this information is not necessarily functionally equivalent. Diploid parthenotes possessing two maternal genomes are generally inviable1, embryos possessing two paternal genomes in man may form hydatidiform moles2, and nuclear transplantation experiments in mice have shown that both parental genomes are necessary for complete embryogenesis3–6. Not all of the genome is involved in these parental effects, however, because zygotes with maternal or paternal disomy for chromosomes 1, 4, 5, 9, 13, 14 and 15 of the mouse survive normally7,8. On the other hand, only the maternal X chromosome is active in mouse extraembryonic membranes9, maternal disomy 6 is lethal7, while non-complementation of maternal duplication/paternal deficiency or its reciprocal for regions of chromosome 2, 8 and 17 has been recognized10–12. We report that animals with maternal duplication/paternal deficiency and its reciprocal for each of two particular chromosome regions show anomalous phenotypes which depart from normal in opposite directions, suggesting a differential functioning of gene loci within these regions. A further example of non-complementation lethality is also reported.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Markert, C. L. J. Hered. 73, 390–397 (1982).
    Article CAS PubMed Google Scholar
  2. Kajii, T. & Ohama, K. Nature 268, 633–634 (1977).
    Article ADS CAS PubMed Google Scholar
  3. Surani, M. A. H., Barton, S. C. & Norris, M. L. Nature 308, 548–550 (1984).
    Article ADS CAS PubMed Google Scholar
  4. Barton, S. C., Surani, M. A. H. & Norris, M. L. Nature 311, 374–376 (1984).
    Article ADS CAS PubMed Google Scholar
  5. McGrath, J. & Solter, D. J. exp. Zool. 228, 355–362 (1983); Nature 308, 550–551 (1984); Cell 37, 179–183 (1984).
    Article CAS PubMed Google Scholar
  6. Mann, J. R. & Lovell-Badge, R. H. Nature 310, 66–67 (1984).
    Article ADS CAS PubMed Google Scholar
  7. Lyon, M. F. in Radiation-Induced Damage in Man (ed. Ishihara, T.) 327–346 (Liss, New York, 1983).
    Google Scholar
  8. Lyon, M. F., Ward, H. C. & Simpson, G. M. Genet. Res. 26, 283–295 (1976).
    Article Google Scholar
  9. Tagaki, N. in Preferential Inactivation of the Paternally Derived X Chromosome in Mice (ed. Russell, L. B.) 341–360 (Plenum, New York, 1978).
    Google Scholar
  10. Searle, A. G. & Beechey, C. V. Cytogenet. Cell Genet. 20, 282–303 (1978).
    Article CAS PubMed Google Scholar
  11. Lyon, M. F. & Glenister, P. H. Genet. Res. 29, 83–92 (1977).
    Article CAS PubMed Google Scholar
  12. Johnston, D. R. Genet. Res. 24, 207–213 (1975).
    Article Google Scholar
  13. Cattanach, B. M. & Moseley, H. Cytogenet. Cell Genet. 12, 264–287 (1973).
    Article CAS PubMed Google Scholar
  14. Crouse, H. V. Genetics 45, 1429–1443 (1960).
    CAS PubMed PubMed Central Google Scholar
  15. Brown, S. & Chandra, H. S. in Cell Biology Vol. 1 (eds Golstein, L. & Prescott, D. M.) 109–189 (Academic, New York, 1977).
    Google Scholar
  16. Lyon, M. F. Nature 190, 372–373 (1961).
    Article ADS CAS PubMed Google Scholar
  17. Burgoyne, P. S. in Basic Reproductive Medicine Vol. 1 (eds Hamilton, D. & Naftolin, F.) 1–33 (MIT Press, 1981).
    Google Scholar
  18. Ohno, S. Wistar Inst. Symp. Monogr. 9, 137–150 (1969).
    CAS PubMed Google Scholar
  19. Schmidtke, J., Kuhl, P. & Engel, W. Nature 260, 319–320 (1976).
    Article ADS CAS PubMed Google Scholar
  20. Klose, J. & Wolf, U. Biochem. Genet. 4, 87–92 (1970).
    Article CAS PubMed Google Scholar
  21. Whitt, G. S., Cho, P. L. & Childers, W. F. J. exp. Zool. 179, 271–282 (1972).
    Article CAS Google Scholar
  22. Whitt, G. S., Childers, W. F. & Cho, P. L. J. Hered. 64, 55–61 (1973).
    Article CAS Google Scholar
  23. Krietsch, W. K. G. et al. Differentiation 23, 141–144 (1982).
    Article CAS PubMed Google Scholar
  24. Green, M. C. in Genetic Variants and Strains of the Laboratory Mouse (ed. Green, M. C.) 8–278 (Gustav Fischer, Stuttgart, 1981).
    Google Scholar
  25. Bartke, A. Gen. comp. Endocr. 5, 418–426 (1965).
    Article CAS PubMed Google Scholar
  26. Buckle, V. J. et al. Clin. Genet. 26, 1–11 (1984).
    Article ADS CAS PubMed Google Scholar
  27. Owerbach, D., Rutter, W. J., Martial, J. A., Baxter, J. D. & Shows, T. B. Science 209, 289–292 (1980).
    Article ADS CAS PubMed Google Scholar
  28. Schultz, L. D., Sweet, H. O., Davisson, M. T. & Coman, D. R. Nature 297, 402–404 (1982).
    Article ADS Google Scholar
  29. Joyner, A. L. et al. Nature 314, 173–175 (1985).
    Article ADS CAS PubMed Google Scholar
  30. Rabin, M. et al. Nature 314, 175–178 (1985).
    Article ADS CAS PubMed Google Scholar
  31. McGinnies, W., Hart, C. P., Gehring, W. J. & Ruddle, F. H. Cell 38, 675–680 (1984).
    Article Google Scholar

Download references

Author information

Authors and Affiliations

  1. MRC Radiobiology Unit, Harwell, Didcot, Oxon, OX11 ORD, UK
    B. M. Cattanach & M. Kirk

Authors

  1. B. M. Cattanach
    You can also search for this author inPubMed Google Scholar
  2. M. Kirk
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Cattanach, B., Kirk, M. Differential activity of maternally and paternally derived chromosome regions in mice.Nature 315, 496–498 (1985). https://doi.org/10.1038/315496a0

Download citation