A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont (original) (raw)

References

  1. Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria and Eucarya. Proc. Natl Acad. Sci. USA 87, 4576–4579 (1990).
    Article ADS CAS Google Scholar
  2. Barns, S. M., Delwiche, C. F., Palmers, J. D. & Pace, N. R. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc. Natl Acad. Sci. USA 93, 9188–9193 (1996).
    Article ADS CAS Google Scholar
  3. Huber, H. et al. Ignicoccus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic Archaea, represented by two new species, Ignicoccus islandicus sp. nov. and Ignicoccus pacificus sp. nov. Int. J. Syst. Evol. Microbiol. 50, 2093–2100 (2000).
    Article Google Scholar
  4. Barns, S. M., Fundyga, R. E., Jeffries, M. W. & Pace, N. R. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc. Natl Acad. Sci. USA 91, 1609–1613 (1994).
    Article ADS CAS Google Scholar
  5. Stetter, K. O. Microbial life in hyperthermal environments. Am. Soc. Microbiol. News 61, 285–290 (1995).
    Google Scholar
  6. Stetter, K. O. Size Limits of Very Small Microorganisms; Proceedings of a Workshop (ed. Space studies board) 68–73 (National Academic Press, Washington DC, 1998).
    Google Scholar
  7. Fricke, H., Giere, O., Stetter, K. O., Alfredsson, G. A. & Kristjansson, J. K. Hydrothermal vent communities at the shallow subpolar mid-Atlantic ridge. Mar. Biol. 102, 425–429 (1989).
    Article Google Scholar
  8. Huber, H., Huber, G. & Stetter, K. O. A modified 4′,6′-diamidino-2-phenylindole fluorescence staining procedure suitable for the visualization of lithotrophic bacteria. Syst. Appl. Microbiol. 6, 105–106 (1985).
    Article Google Scholar
  9. Ashkin, A., Dziedzic, J. M. & Yamane, T. Optical trapping and manipulation of single cells using infrared laser beams. Nature 330, 769–771 (1987).
    Article ADS CAS Google Scholar
  10. Huber, R. et al. Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis. Nature 376, 57–58 (1995).
    Article ADS CAS Google Scholar
  11. Woese, C. R. Bacterial evolution. Microbiol. Rev. 51, 221–271 (1987).
    CAS PubMed PubMed Central Google Scholar
  12. Eder, W., Ludwig, W. & Huber, R. Novel 16S rRNA gene sequences retrieved from highly saline brine sediments of Kebrit Deep, Red Sea. Arch. Microbiol. 172, 213–218 (1999).
    Article CAS Google Scholar
  13. Sambrook, J. Molecular cloning: a laboratory manual. (Cold Spring Harbor Laboratory Press, New York, 1989).
  14. Ludwig, W. et al. Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19, 554–568 (1998).
    Article CAS Google Scholar
  15. Burggraf, S. et al. Identifying members of the domain Archaea with rRNA-targeted oligonucleotide probes. Appl. Environ. Microbiol. 60, 3112–3119 (1994).
    CAS PubMed PubMed Central Google Scholar
  16. Stahl, D. A. & Amann, R. Nucleic acid techniques in bacterial systematics (eds Stackebrandt, E. & Goodfellow, M.) 205–248 (Wiley, Chichester, 1991).
    Google Scholar
  17. Preston, C. M., Wu, K. Y., Molinski, T. F. & DeLong, E. F. A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc. Natl Acad. Sci. USA 93, 6241–6246 (1996).
    Article ADS CAS Google Scholar
  18. Boetius, A. et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626 (2000).
    Article ADS CAS Google Scholar
  19. Fraser, C. M. et al. the minimal gene complement of Mycoplasma genitalium. Science 270, 397–403 (1995).
    Article ADS CAS Google Scholar
  20. Rohozinski, J., Girton, L. E. & Van Etten, J. L. Chlorella viruses contain linear nonpermutated double-stranded DNA genomes with covalently closed hairpin ends. Virology 168, 363–369 (1989).
    Article CAS Google Scholar
  21. Murphy, F. A. et al. (eds) Virus Taxonomy: Sixth Report of the International Committee on Taxonomy of Viruses (Springer, Vienna/New York, 1995).
    Google Scholar
  22. Hutchinson, C. A. III et al. Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286, 2165–2169 (1999).
    Article Google Scholar
  23. Ochman, H. & Moran, N. A. Genes lost and genes found: Evolution of bacterial pathogenesis and symbiosis. Science 292, 1096–1099 (2001).
    Article ADS CAS Google Scholar
  24. Brosius, J., Dull, T J. Sleeter, D. D. & Noller, H. F. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J. Mol. Biol. 148, 107–127 (1981).
    Article CAS Google Scholar
  25. Baumann, C., Judex, M., Huber, H. & Wirth, R. Estimation of genome sizes of hyperthermophiles. Extremophiles 2, 101–108 (1998).
    Article CAS Google Scholar
  26. Burggraf, S., Huber, H. & Stetter, K. O. Reclassification of the crenarchaeal orders and families in accordance with 16S ribosomal RNA sequence data. Int. J. Syst. Bacteriol. 47, 657–660 (1997).
    Article CAS Google Scholar
  27. Ludwig, W. & Strunk, O. ARB: A software environment for sequence data (2002); available at http://www.arb-home.de.
  28. De Rijk, P. & De Wachter, R. RnaViz, a program for the visualisation of RNA secondary structure. Nucleic Acids Res. 25, 4679–4684 (1997).
    Article CAS Google Scholar
  29. Burggraf, S., Heyder, P. & Eis, N. A pivotal archaea group. Nature 383, 780 (1997).
    Article ADS Google Scholar

Download references