Dendritic cell regulation of TH1-TH2 development (original) (raw)
Zinkernagel, R. M. et al. Antigen localization regulates immune responses in a dose- and time-dependent fashion: a geographical view of immune reactivity. Immunol. Rev.156, 199–209 (1997). ArticleCASPubMed Google Scholar
Austyn, J. M. New insights into the mobilization and phagocytic activity of dendritic cells. J. Exp. Med.183, 1287–1292 (1996). ArticleCASPubMed Google Scholar
Barratt-Boyes, S. M., Watkins, S. C. & Finn, O. J. Migration of cultured chimpanzee dendritic cells following intravenous and subcutaneous injection. Adv. Exp. Med. Biol.417, 71–75 (1997). ArticleCASPubMed Google Scholar
Kupiec-Weglinski, J. W., Austyn, J. M. & Morris, P. J. Migration patterns of dendritic cells in the mouse. Traffic from the blood, and T cell-dependent and -independent entry to lymphoid tissues. J. Exp. Med.167, 632–645 (1988). ArticleCASPubMed Google Scholar
De Smedt, T. et al. Regulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo. J. Exp. Med.184, 1413–1424 (1996). ArticleCASPubMed Google Scholar
Cumberbatch, M., Dearman, R. J. & Kimber, I. Interleukin 1 β and the stimulation of Langerhans cell migration: comparisons with tumour necrosis factor α. Arch. Dermatol. Res.289, 277–284 (1997). ArticleCASPubMed Google Scholar
Cumberbatch, M., Dearman, R. J. & Kimber, I. Langerhans cells require signals from both tumor necrosis factor-α and interleukin-1 β for migration. Immunology92, 388–395 (1997). ArticleCASPubMedPubMed Central Google Scholar
Dieu, M. C. et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J. Exp. Med.188, 373–386 (1998). ArticleCASPubMedPubMed Central Google Scholar
Cella, M., Engering, A., Pinet, V., Pieters, J. & Lanzavecchia, A. Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature388, 782–787 (1997). ArticleCASPubMed Google Scholar
Pierre, P. et al. Developmental regulation of MHC class II transport in mouse dendritic cells. Nature388, 787–792 (1997). ArticleCASPubMed Google Scholar
Inaba, K. et al. The formation of immunogenic major histocompatibility complex class II-peptide ligands in lysosomal compartments of dendritic cells is regulated by inflammatory stimuli. J. Exp. Med.191, 927–936 (2000). ArticleCASPubMedPubMed Central Google Scholar
Iezzi, G., Karjalainen, K. & Lanzavecchia, A. The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity8, 89–95 (1998). ArticleCASPubMed Google Scholar
Iezzi, G., Scotet, E., Scheidegger, D. & Lanzavecchia, A. The interplay between the duration of TCR and cytokine signaling determines T cell polarization. Eur. J. Immunol.29, 4092–4101 (1999). ArticleCASPubMed Google Scholar
Reis e Sousa, C. et al. Paralysis of dendritic cell IL-12 production by microbial products prevents infection-induced immunopathology. Immunity11, 637–647 (1999). ArticleCASPubMed Google Scholar
Winzler, C. et al. Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J. Exp. Med.185, 317–328 (1997). ArticleCASPubMedPubMed Central Google Scholar
De Smedt, T. et al. Antigen-specific T lymphocytes regulate lipopolysaccharide-induced apoptosis of dendritic cells in vivo. J. Immunol.161, 4476–4479 (1998). CASPubMed Google Scholar
Anderson, D. M. et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature390, 175–179 (1997). ArticleCASPubMed Google Scholar
Wong, B. R. et al. TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J. Exp. Med.186, 2075–2080 (1997). ArticleCASPubMedPubMed Central Google Scholar
Vremec, D. et al. The surface phenotype of dendritic cells purified from mouse thymus and spleen: investigation of the CD8 expression by a subpopulation of dendritic cells. J. Exp. Med.176, 47–58 (1992). ArticleCASPubMed Google Scholar
Inaba, K. et al. High levels of a major histocompatibility complex II-self peptide complex on dendritic cells from the T cell areas of lymph nodes. J. Exp. Med.186, 665–672 (1997). ArticleCASPubMedPubMed Central Google Scholar
Liu, L., Zhang, M., Jenkins, C. & MacPherson, G. G. Dendritic cell heterogeneity in vivo : two functionally different dendritic cell populations in rat intestinal lymph can be distinguished by CD4 expression. J. Immunol.161, 1146–1155 (1998). CASPubMed Google Scholar
Howard, C. J. et al. Identification of two distinct populations of dendritic cells in afferent lymph that vary in their ability to stimulate T cells. J. Immunol.159, 5372–5382 (1997). CASPubMed Google Scholar
Grouard, G. et al. The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J. Exp. Med.185, 1101–1111 (1997). ArticleCASPubMedPubMed Central Google Scholar
Rissoan, M. C. et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science283, 1183–1186 (1999). ArticleCASPubMed Google Scholar
Vremec, D. et al. CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J. Immunol.164, 2978–2986 (2000). ArticleCASPubMed Google Scholar
Salomon, B., Cohen, J. L., Masurier, C. & Klatzmann, D. Three populations of mouse lymph node dendritic cells with different origins and dynamics. J. Immunol.160, 708–717 (1998). CASPubMed Google Scholar
Wu, L. et al. RelB is essential for the development of myeloid-related CD8α− dendritic cells but not of lymphoid-related CD8α+ dendritic cells. Immunity9, 839–847 (1998). ArticleCASPubMed Google Scholar
Wu, L., Li, C. L. & Shortman, K. Thymic dendritic cell precursors: relationship to the T lymphocyte lineage and phenotype of the dendritic cell progeny. J. Exp. Med.184, 903–911 (1996). ArticleCASPubMed Google Scholar
Radtke, F. et al. Notch1 deficiency dissociates the intrathymic development of dendritic cells and T cells. J. Exp. Med.191, 1085–1093 (2000). ArticleCASPubMedPubMed Central Google Scholar
Suss, G. & Shortman, K. A subclass of dendritic cells kills CD4 T cells via Fas/Fas-ligand-induced apoptosis. J. Exp. Med.183, 1789–1796 (1996). ArticleCASPubMed Google Scholar
Kronin, V. et al. A subclass of dendritic cells regulates the response of naive CD8 T cells by limiting their IL-2 production. J. Immunol.157, 3819–3827 (1996). CASPubMed Google Scholar
Pulendran, B. et al. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc. Natl Acad. Sci. USA96, 1036–1041 (1999). ArticleCASPubMedPubMed Central Google Scholar
Maldonado-Lopez, R. et al. CD8α+ and CD8α− subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J. Exp. Med.189, 587–592 (1999). ArticleCASPubMedPubMed Central Google Scholar
Maldonado-Lopez, R. et al. Role of CD8α+ and CD8α− dendritic cells in the induction of primary immune responses in vivo. J. Leuk. Biol.66, 242–246 (1999). ArticleCAS Google Scholar
Kalinski, P., Hilkens, C. M., Wierenga, E. A. & Kapsenberg, M. L. T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol. Today20, 561–567 (1999). ArticleCASPubMed Google Scholar
Kapsenberg, M. L. & Kalinski, P. The concept of type 1 and type 2 antigen-presenting cells. Immunol. Lett.69, 5–6 (1999). ArticleCASPubMed Google Scholar
Kapsenberg, M. L., Hilkens, C. M., Wierenga, E. A. & Kalinski, P. The role of antigen-presenting cells in the regulation of allergen-specific T cell responses. Curr. Opin. Immunol.10, 607–613 (1998). ArticleCASPubMed Google Scholar
Pulendran, B. et al. Developmental pathways of dendritic cells in vivo: distinct function, phenotype, and localization of dendritic cell subsets in FLT3 ligand-treated mice. J. Immunol.159, 2222–2231 (1997). CASPubMed Google Scholar
O'Connell, P., Logar, A. J., Morelli, A. E. & Thomas, A. W. Comparative studies on hepatic myeloid and lymphoid DC. 6th Int. Symp. Dendritic Cells62 (2000). [Abstr.]
Fazekas de St Groth, B. The evolution of self-tolerance: a new cell arises to meet the challenge of self-reactivity. Immunol. Today19, 448–454 (1998). ArticleCASPubMed Google Scholar
Reis e Sousa, C. & Germain, R. N. Analysis of adjuvant function by direct visualization of antigen presentation in vivo: endotoxin promotes accumulation of antigen-bearing dendritic cells in the T cell areas of lymphoid tissue. J. Immunol.162, 6552–6561 (1999). PubMed Google Scholar
Anjuere, F. et al. Definition of dendritic cell subpopulations present in the spleen, Peyer's patches, lymph nodes, and skin of the mouse. Blood93, 590–598 (1999). CASPubMed Google Scholar
Merad, M., Engleman, E.G. & Fong, L. Migratory Myeloid DC express CD8α antigen in peripheral lymphoid organs. 6th Int. Symp. Dendritic Cells72 (2000). [Abstr.]
Macatonia, S. E. et al. Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. J. Immunol.154, 5071–5079 (1995). CASPubMed Google Scholar
Koch, F. et al. High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10. J. Exp. Med.184, 741–746 (1996). [Published Erratum appears in J. Exp. Med. 184, 1590 (1996).] ArticleCASPubMed Google Scholar
Kalinski, P., Schuitemaker, J. H., Hilkens, C. M., Wierenga, E. A. & Kapsenberg, M. L. Final maturation of dendritic cells is associated with impaired responsiveness to IFN-γ and to bacterial IL-12 inducers: decreased ability of mature dendritic cells to produce IL-12 during the interaction with Th cells. J. Immunol.162, 3231–3236 (1999). CASPubMed Google Scholar
Snijders, A., Kalinski, P., Hilkens, C. M. & Kapsenberg, M. L. High-level IL-12 production by human dendritic cells requires two signals. Int. Immunol.10, 1593–1598 (1998). ArticleCASPubMed Google Scholar
Vieira, P. L., de Jong, E. C., Wierenga, E. A., Kapsenberg, M. L. & Kalinski, P. Development of Th1-inducing capacity in myeloid dendritic cells requires environmental instruction. J. Immunol.164, 4507–4512 (2000). ArticleCASPubMed Google Scholar
Macatonia, S. E., Hsieh, C. S., Murphy, K. M. & O'Garra, A. Dendritic cells and macrophages are required for Th1 development of CD4+ T cells from αβ TCR transgenic mice: IL-12 substitution for macrophages to stimulate IFN-γ production is IFN—-dependent. Int. Immunol.5, 1119–1128 (1993). ArticleCASPubMed Google Scholar
Hsieh, C. S. et al. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science260, 547–549 (1993). ArticleCASPubMed Google Scholar
Reis e Sousa, C. et al. In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J. Exp. Med.186, 1819–1829 (1997). ArticleCASPubMed Google Scholar
Aliberti, J. et al. CCR5 provides a signal for microbial induced production of IL-12 by CD8α+ dendritic cells. Nature Immunol.1, 83–87 (2000). ArticleCAS Google Scholar
Hochrein, H. et al. Interleukin-4 is a major regulatory cytokine governing bioactive interleukin-12 prudction by mouse and human dendritic cells. J. Exp. Med. (in the press, 2000).
Kalinski, P. et al. IL-4 is a mediator of IL-12p70 induction by human Th2 cells: reversal of polarized Th2 phenotype by dendritic cells. J. Immunol.165, 1877–1881 (2000). ArticleCASPubMed Google Scholar
De Becker, G. et al. Regulation of T helper cell differentiation in vivo by soluble and membrane proteins provided by antigen-presenting cells. Eur. J. Immunol.28, 3161–3171 (1998). ArticleCASPubMed Google Scholar
O'Garra, A. Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity8, 275–283 (1998). ArticleCASPubMed Google Scholar
Siegal, F. P. et al. The Nature of the principal type 1 interferon-producing cells in human blood. Science284, 1835–1837 (1999). ArticleCASPubMed Google Scholar
Cho, S. S. et al. Activation of STAT4 by IL-12 and IFN-α: evidence for the involvement of ligand-induced tyrosine and serine phosphorylation. J. Immunol.157, 4781–4789 (1996). CASPubMed Google Scholar
Rogge, L. et al. The role of Stat4 in species-specific regulation of Th cell development by type I IFNs. J. Immunol.161, 6567–6574 (1998). CASPubMed Google Scholar
Farrar, J. D., Smith, J. D., Murphy, T. L. & Murphy, K. M. Recruitment of Stat4 to the Human Interferon-α/β Receptor Requires Activated Stat2. J. Biol. Chem.275, 2693–2697 (2000). ArticleCASPubMed Google Scholar
Farrar, J. D. et al. Selective loss of type I interferon-induced STAT4 activation caused by a minisatellite insertion in mouse STAT2. Nature Immunol. 1, 65–69 (2000). ArticleCAS Google Scholar
Kadowoki, N. et al. Natural interferon α/β-producing cells link innate and adaptive immunity. J. Exp. Med.192 (in the press, 2000).
Jacobson, N. G. et al. Interleukin 12 signaling in T helper type 1 (Th1) cells involves tyrosine phosphorylation of signal transducer and activator of transcription (Stat)3 and Stat4. J. Exp. Med.181, 1755–1762 (1995). ArticleCASPubMed Google Scholar
Thierfelder, W. E. et al. Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature382, 171–174 (1996). ArticleCASPubMed Google Scholar
Kaplan, M. H., Sun, Y. L., Hoey, T. & Grusby, M. J. Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature382, 174–177 (1996). ArticleCASPubMed Google Scholar
Wu, C., Ferrante, J., Gately, M. K. & Magram, J. Characterization of IL-12 receptor β1 chain (IL-12Rβ1)-deficient mice: IL-12Rβ1 is an essential component of the functional mouse IL-12 receptor. J. Immunol.159, 1658–1665 (1997). CASPubMed Google Scholar
Xu, X., Sun, Y. L. & Hoey, T. Cooperative DNA binding and sequence-selective recognition conferred by the STAT amino-terminal domain. Science273, 794–797 (1996). ArticleCASPubMed Google Scholar
Robinson, D. et al. IGIF does not drive Th1 development but synergizes with IL-12 for interferon-γ production and activates IRAK and NFκB. Immunity7, 571–581 (1997). ArticleCASPubMed Google Scholar
Yang, J., Murphy, T. L., Ouyang, W. & Murphy, K. M. Induction of interferon-γ production in Th1 CD4+ T cells: evidence for two distinct pathways for promoter activation. Eur. J. Immunol.29, 548–555 (1999). ArticleCASPubMed Google Scholar
Ouyang, W. et al. The Ets transcription factor ERM is Th1-specific and induced by IL-12 through a Stat4-dependent pathway. Proc. Natl Acad. Sci. USA96, 3888–3893 (1999). ArticleCASPubMedPubMed Central Google Scholar
Carter, L. L. & Murphy, K. M. Lineage-specific requirement for signal transducer and activator of transcription (Stat)4 in interferon γ production from CD4(+) versus CD8(+) T cells. J. Exp. Med.189, 1355–1360 (1999). ArticleCASPubMedPubMed Central Google Scholar
Kaplan, M. H., Wurster, A. L. & Grusby, M. J. A signal transducer and activator of transcription (Stat)4-independent pathway for the development of T helper type 1 cells. J. Exp. Med.188, 1191–1196 (1998). ArticleCASPubMedPubMed Central Google Scholar
Frucht, D. M. et al. Stat4 is expressed in activated peripheral blood monocytes, dendritic cells, and macrophages at sites of Th1-mediated inflammation. J. Immunol.164, 4659–4664 (2000). ArticleCASPubMed Google Scholar
Szabo, S. J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell100, 655–669 (2000). ArticleCASPubMed Google Scholar
Gourley, T. et al. A novel role for the major histocompatibility complex class II transactivator CIITA in the repression of IL-4 production. Immunity10, 377–386 (1999). ArticleCASPubMed Google Scholar
Rincon, M. et al. Interferon-γ expression by Th1 effector T cells mediated by the p38 MAP kinase signaling pathway. EMBO J.17, 2817–2829 (1998). ArticleCASPubMedPubMed Central Google Scholar
Yang, D. D. et al. Differentiation of CD4+ T cells to Th1 cells requires MAP kinase JNK2. Immunity9, 575–585 (1998). ArticleCASPubMed Google Scholar
Dong, C. et al. Defective T cell differentiation in the absence of Jnk1. Science282, 2092–2095 (1998). ArticleCASPubMed Google Scholar
Lu, H. T. et al. Defective IL-12 production in mitogen-activated protein (MAP) kinase kinase 3 (Mkk3)-deficient mice. EMBO J.18, 1845–1857 (1999). ArticleCASPubMedPubMed Central Google Scholar
Taki, S. et al. Multistage regulation of Th1-type immune responses by the transcription factor IRF-1. Immunity6, 673–679 (1997). ArticleCASPubMed Google Scholar
Lohoff, M. et al. Interferon regulatory factor-1 is required for a T helper 1 immune response in vivo. Immunity6, 681–689 (1997). ArticleCASPubMed Google Scholar
Coccia, E. M. et al. Interleukin-12 induces expression of interferon regulatory factor-1 via signal transducer and activator of transcription-4 in human T helper type 1 cells. J. Biol. Chem.274, 6698–6703 (1999). ArticleCASPubMed Google Scholar
Wenner, C. A., Guler, M. L., Macatonia, S. E., O'Garra, A. & Murphy, K. M. Roles of IFN-γ and IFN-α in IL-12-induced T helper cell-1 development. J. Immunol.156, 1442–1447 (1996). CASPubMed Google Scholar
Parronchi, P. et al. IL-4 and IFN (α and β) exert opposite regulatory effects on the development of cytolytic potential by Th1 or Th2 human T cell clones. J. Immunol.149, 2977–2983 (1992). CASPubMed Google Scholar
Rogge, L. et al. Selective expression of an interleukin-12 receptor component by human T helper 1 cells. J. Exp. Med.185, 825–831 (1997). ArticleCASPubMedPubMed Central Google Scholar
Bacon, C. M. et al. Interleukin 12 induces tyrosine phosphorylation and activation of STAT4 in human lymphocytes. Proc. Natl Acad. Sci. USA92, 7307–7311 (1995). ArticleCASPubMedPubMed Central Google Scholar
Uze, G., Lutfalla, G. & Gresser, I. Genetic transfer of a functional human interferon α receptor into mouse cells: cloning and expression of its cDNA. Cell60, 225–234 (1990). ArticleCASPubMed Google Scholar
Cook, J. R., Cleary, C. M., Mariano, T. M., Izotova, L. & Pestka, S. Differential responsiveness of a splice variant of the human type I interferon receptor to interferons. J. Biol. Chem.271, 13448–13453 (1996). ArticleCASPubMed Google Scholar
Novick, D., Cohen, B. & Rubinstein, M. The human interferon α/β receptor: characterization and molecular cloning. Cell77, 391–400 (1994). ArticleCASPubMed Google Scholar
Soh, J. et al. Expression of a functional human type I interferon receptor in hamster cells: application of functional yeast artificial chromosome (YAC) screening. J. Biol. Chem.269, 18102–18110 (1994). CASPubMed Google Scholar
Colamonici, O. R. & Domanski, P. Identification of a novel subunit of the type I interferon receptor localized to human chromosome 21. J. Biol. Chem.268, 10895–10899 (1993). CASPubMed Google Scholar
Kim, S. H., Cohen, B., Novick, D. & Rubinstein, M. Mammalian type I interferon receptors consists of two subunits: IFNaR1 and IFNaR2. Gene196, 279–286 (1997). ArticleCASPubMed Google Scholar
Owczarek, C. M. et al. Cloning and characterization of soluble and transmembrane isoforms of a novel component of the murine type I interferon receptor, IFNAR 2. J. Biol. Chem.272, 23865–23870 (1997). ArticleCASPubMed Google Scholar
Domanski, P. et al. A region of the β subunit of the interferon α receptor different from box 1 interacts with Jak1 and is sufficient to activate the Jak-Stat pathway and induce an antiviral state. J. Biol. Chem.272, 26388–26393 (1997). ArticleCASPubMed Google Scholar
Colamonici, O. et al. Direct binding to and tyrosine phosphorylation of the α subunit of the type I interferon receptor by p135tyk2 tyrosine kinase. Mol. Cell. Biol.14, 8133–8142 (1994). ArticleCASPubMedPubMed Central Google Scholar
Yan, H., Krishnan, K., Lim, J. T., Contillo, L. G. & Krolewski, J. J. Molecular characterization of an α interferon receptor 1 subunit (IFNαR1) domain required for TYK2 binding and signal transduction. Mol. Cell. Biol.16, 2074–2082 (1996). ArticleCASPubMedPubMed Central Google Scholar
Abramovich, C. et al. Differential tyrosine phosphorylation of the IFNAR chain of the type I interferon receptor and of an associated surface protein in response to IFN-α and IFN-β. EMBO J.13, 5871–5877 (1994). ArticleCASPubMedPubMed Central Google Scholar
Yan, H. et al. Phosphorylated interferon-α receptor 1 subunit (IFNαR1) acts as a docking site for the latent form of the 113 kDa STAT2 protein. EMBO J.15, 1064–1074 (1996). ArticleCASPubMedPubMed Central Google Scholar
Leung, S., Qureshi, S. A., Kerr, I. M. & Darnell, J. E. Jr & Stark, G. R. Role of STAT2 in the α interferon signaling pathway. Mol. Cell. Biol.15, 1312–1317 (1995). ArticleCASPubMedPubMed Central Google Scholar
Qureshi, S. A., Leung, S., Kerr, I. M., Stark, G. R. & Darnell, J. E., Jr Function of Stat2 protein in transcriptional activation by α interferon. Mol. Cell. Biol.16, 288–293 (1996). ArticleCASPubMedPubMed Central Google Scholar
Yang, C. H. et al. Direct association of STAT3 with the IFNAR-1 chain of the human type I interferon receptor. J. Biol. Chem.271, 8057–8061 (1996). ArticleCASPubMed Google Scholar
Pfeffer, L. M. et al. STAT3 as an adapter to couple phosphatidylinositol 3-kinase to the IFNAR1 chain of the type I interferon receptor. Science276, 1418–1420 (1997). ArticleCASPubMed Google Scholar
Santini, S. M. et al. Type I interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro an in Hu-PBL-SCID mice. J. Exp. Med.191, 1777–1788 (2000). ArticleCASPubMedPubMed Central Google Scholar
Cella, M. et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nature Medicine5, 919–923 (1999). ArticleCASPubMed Google Scholar
Burstein, H. J., Shea, C. M. & Abbas, A. K. Aqueous antigens induce in vivo tolerance selectively in IL-2- and IFN—-producing (Th1) cells. J. Immunol.148, 3687–3691 (1992). CASPubMed Google Scholar
De Wit, D. et al. The injection of deaggregated γ globulins in adult mice induces antigen-specific unresponsiveness of T helper type 1 but not type 2 lymphocytes. J. Exp. Med.175, 9–14 (1992). ArticleCASPubMed Google Scholar
Rincon, M., Anguita, J., Nakamura, T., Fikrig, E. & Flavell, R. A. Interleukin (IL)-6 directs the differentiation of IL-4-producing CD4+ T cells. J. Exp. Med.185, 461–469 (1997). ArticleCASPubMedPubMed Central Google Scholar
Schmitz, J. et al. Induction of interleukin 4 (IL-4) expression in T helper (Th) cells is not dependent on IL-4 from non-Th cells. J. Exp. Med.179, 1349–1353 (1994). ArticleCASPubMed Google Scholar
Ranger, A. M., Das, M. P., Kuchroo, V. K. & Glimcher, L. H. B7–2 (CD86) is essential for the development of IL-4-producing T cells. Int. Immunol.8, 1549–1560 (1996). ArticleCASPubMed Google Scholar
Freeman, G. J. et al. B7-1 and B7–2 do not deliver identical costimulatory signals, since B7-2 but not B7-1 preferentially costimulates the initial production of IL-4. Immunity2, 523–532 (1995). ArticleCASPubMed Google Scholar
Coffman, R. L. & Reiner, S. L. Instruction, selection, or tampering with the odds? Science284, 1283 (1999). ArticleCASPubMed Google Scholar
Hollander, G. A. et al. Monoallelic expression of the interleukin-2 locus. Science279, 2118–2121 (1998). ArticleCASPubMed Google Scholar
Bix, M. & Locksley, R. M. Independent and epigenetic regulation of the interleukin-4 alleles in CD4+ T cells. Science281, 1352–1354 (1998). ArticleCASPubMed Google Scholar
Naramura, M., Hu, R. J. & Gu, H. Mice with a fluorescent marker for interleukin 2 gene activation. Immunity9, 209–216 (1998). ArticleCASPubMed Google Scholar
Riviere, I., Sunshine, M. J. & Littman, D. R. Regulation of IL-4 expression by activation of individual alleles. Immunity9, 217–228 (1998). ArticleCASPubMed Google Scholar
Bird, J. J. et al. Helper T cell differentiation is controlled by the cell cycle. Immunity9, 229–237 (1998). ArticleCASPubMed Google Scholar
Gett, A. V. & Hodgkin, P. D. Cell division regulates the T cell cytokine repertoire, revealing a mechanism underlying immune class regulation. Proc. Natl Acad. Sci. USA95, 9488–9493 (1998). ArticleCASPubMedPubMed Central Google Scholar
Richter, A., Lohning, M. & Radbruch, A. Instruction for cytokine expression in T helper lymphocytes in relation to proliferation and cell cycle progression. J. Exp. Med.190, 1439–1450 (1999). ArticleCASPubMedPubMed Central Google Scholar
Finkelman, F. D. et al. Stat6 regulation of in vivo IL-4 responses. J. Immunol.164, 2303–2310 (2000). ArticleCASPubMed Google Scholar
Jankovic, D. et al. Single cell analysis reveals that IL-4 receptor/Stat6 signaling is not required for the in vivo or in vitro development of CD4(+) lymphocytes with a Th2 cytokine profile. J. Immunol.164, 3047–3055 (2000). ArticleCASPubMed Google Scholar
Ouyang, W. et al. Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity12, 27–37 (2000). ArticleCASPubMed Google Scholar
Rodriguez-Palmero, M., Hara, T., Thumbs, A. & Hunig, T. Triggering of T cell proliferation through CD28 induces GATA-3 and promotes T helper type 2 differentiation in vitro and in vivo. Eur. J. Immunol.29, 3914–3924 (1999). ArticleCASPubMed Google Scholar
Ouyang, W. et al. Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity9, 745–755 (1998). ArticleCASPubMed Google Scholar