Iron corrosion by novel anaerobic microorganisms (original) (raw)

References

  1. Uhlig, H. H. Corrosion and Corrosion Control 3rd edn (Wiley, New York, 1985)
    Google Scholar
  2. Hamilton, W. A. Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling 19, 65–76 (2003)
    Article CAS Google Scholar
  3. Lee, W., Lewandowski, Z., Nielsen, P. H. & Hamilton, W. A. Role of sulfate-reducing bacteria in corrosion of mild steel: a review. Biofouling 8, 165–194 (1995)
    Article CAS Google Scholar
  4. Pankhania, I. P. Hydrogen metabolism in sulphate-reducing bacteria and its role in anaerobic corrosion. Biofouling 1, 27–47 (1988)
    Article CAS Google Scholar
  5. Widdel, F. in Biotechnology Focus 3 (eds Finn, R. K. et al.) 277–318 (Hanser, Munich, 1992)
    Google Scholar
  6. Cord-Ruwisch, R. in Environmental Microbe-Metal Interaction (ed. Lovley, D. R.) 159–173 (ASM Press, Washington, DC, 2000)
    Book Google Scholar
  7. Costello, J. A. Cathodic depolarization by sulphate-reducing bacteria. S. Afr. J. Sci. 70, 202–204 (1974)
    CAS Google Scholar
  8. von Wolzogen Kuehr, C. A. H. & van der Vlugt, I. S. The graphitization of cast iron as an electrobiochemical process in anaerobic soil. Water 18, 147–165 (1934)
    Google Scholar
  9. Booth, G. H. & Tiller, A. K. Cathodic characteristic of mild steel in suspension of sulphate-reducing bacteria. Corros. Sci. 8, 583–600 (1968)
    Article CAS Google Scholar
  10. Pankhania, I. P., Moosavi, A. N. & Hamilton, W. A. Utilization of cathodic hydrogen by Desullfovibrio vulgaris (Hildenborough). J. Gen. Microbiol. 132, 3357–3365 (1986)
    CAS Google Scholar
  11. Iverson, W. P. & Olson, G. J. in Current Perspectives in Microbial Ecology (eds Klug, M. J. & Reddy, C. A.) 623–627 (ASM, Washington, DC, 1984)
    Google Scholar
  12. Bockris, J. O'M. & Reddy, A. K. N. Modern Electrochemistry Vol. 2 (Plenum, New York, 1970)
    Google Scholar
  13. Beech, I. B. et al. Study of parameters implicated in the biodeterioration of mild steel in the presence of different species of sulphate-reducing bacteria. Int. Biodeter. Biodegrad. 34, 289–303 (1994)
    Article ADS CAS Google Scholar
  14. Rabus, R., Hansen, T. & Widdel, F. in The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community (eds Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. & Stackebrandt, E.) (Springer, New York, 2000)
    Google Scholar
  15. Widdel, F. & Bak, F. in The Prokaryotes 2nd edn Vol. 6 (eds Balows, A., Trüper, H. G., Dworkin, M., Harder, W. & Schleifer, K.-H.) 3352–3378 (Springer, New York, 1992)
    Book Google Scholar
  16. Hardy, J. A. Utilisation of cathodic hydrogen by sulphate-reducing bacteria. Br. Corros. J. 18, 190–193 (1983)
    Article CAS Google Scholar
  17. Laishley, E. J. & Bryant, R. D. in Biochemistry and Physiology of Anaerobic Bacteria (eds Ljungdahl, L. G., Adams, M. W., Barton, L. L., Ferry, J. G. & Johnson, M. K.) 252–260 (Springer, New York, 2003)
    Book Google Scholar
  18. Cord-Ruwisch, R. & Widdel, F. Corroding iron as a hydrogen source for sulphate reduction in growing cultures of sulphate-reducing bacteria. Appl. Microbiol. Biotechnol. 25, 169–174 (1986)
    Article CAS Google Scholar
  19. Daniels, L., Belay, N., Rajagopal, B. S. & Weimer, P. J. Bacterial methanogenesis and growth from CO2 with elemental iron as the sole source of electrons. Science 237, 509–511 (1987)
    Article ADS CAS Google Scholar
  20. Deckena, S. & Blotevogel, K.-H. Fe0-oxidation in the presence of methanogenic and sulphate-reducing bacteria and its possible role in anaerobic corrosion. Biofouling 5, 287–293 (1992)
    Article CAS Google Scholar
  21. Schlegel, H. G. General Microbiology 7th edn (Cambridge Univ. Press, Cambridge, 1993)
    Google Scholar
  22. Manz, W., Eisenbrecher, M., Neu, T. R. & Szewzyk, U. Abundance and spatial organization of Gram-negative sulfate-reducing bacteria in activated sludge investigated by in situ probing with specific 16S rRNA targeted oligonucleotides. FEMS Microbiol. Ecol. 25, 43–61 (1998)
    Article CAS Google Scholar
  23. Appia-Ayme, C., Guiliani, N., Ratouchniak, J. & Bonnefoy, V. Characterization of an operon encoding two _c_-type cytochromes, an _aa_3-type cytochrome oxidase, and rusticyanin in Thiobacillus ferrooxidans ATCC 33020. Appl. Environ. Microbiol. 65, 4781–4787 (1999)
    CAS PubMed PubMed Central Google Scholar
  24. Bond, D. R. & Lovley, D. R. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69, 1548–1555 (2003)
    Article CAS Google Scholar
  25. Deppenmeier, U. The unique biochemistry of methanogenesis. Prog. Nucleic Acid Res. Mol. Biol. 71, 223–283 (2002)
    Article CAS Google Scholar
  26. Muyzer, G., Teske, A., Wirsen, C. O. & Jannasch, H. W. Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch. Microbiol. 164, 165–172 (1995)
    Article CAS Google Scholar
  27. Huber, H. et al. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417, 63–67 (2002)
    Article ADS CAS Google Scholar
  28. Ludwig, W. et al. ARB: a software environment for sequence data. (Department of Microbiology, Technical Univ. Munich, 2002); available at 〈http://www.arb-home.de/〉.
  29. Pernthaler, A., Pernthaler, J. & Amann, R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol. 68, 3094–3101 (2002)
    Article CAS Google Scholar

Download references