Hair cell synaptic ribbons are essential for synchronous auditory signalling (original) (raw)
References
Fuchs, P. A., Glowatzki, E. & Moser, T. The afferent synapse of cochlear hair cells. Curr. Opin. Neurobiol.13, 452–458 (2003) ArticleCAS Google Scholar
Smith, C. A. & Sjostrand, F. S. A synaptic structure in the hair cells of the guinea pig cochlea. J. Ultrastruct. Res.5, 184–192 (1961) Article Google Scholar
Liberman, M. C. Single-neuron labeling in the cat auditory nerve. Science216, 1239–1241 (1982) ArticleADSCAS Google Scholar
Sterling, P. & Matthews, G. Structure and function of ribbon synapses. Trends Neurosci.28, 20–29 (2005) ArticleCAS Google Scholar
Schmitz, F., Konigstorfer, A. & Sudhof, T. C. RIBEYE, a component of synaptic ribbons: a protein's journey through evolution provides insight into synaptic ribbon function. Neuron28, 857–872 (2000) ArticleCAS Google Scholar
Dick, O. et al. Localization of the presynaptic cytomatrix protein Piccolo at ribbon and conventional synapses in the rat retina: comparison with Bassoon. J. Comp. Neurol.439, 224–234 (2001) ArticleCAS Google Scholar
tom Dieck, S. et al. Molecular dissection of the photoreceptor ribbon synapse: physical interaction of Bassoon and RIBEYE is essential for the assembly of the ribbon complex. J. Cell Biol. (in the press); published online 22 February 2005 (doi:10.1083/jcb.200408157)
tom Dieck, S. et al. Bassoon, a novel zinc-finger CAG/glutamine-repeat protein selectively localized at the active zone of presynaptic nerve terminals. J. Cell Biol.142, 499–509 (1998) ArticleCAS Google Scholar
Dick, O. et al. The presynaptic active zone protein bassoon is essential for photoreceptor ribbon synapse formation in the retina. Neuron37, 775–786 (2003) ArticleCAS Google Scholar
Paillart, C., Li, J., Matthews, G. & Sterling, P. Endocytosis and vesicle recycling at a ribbon synapse. J. Neurosci.23, 4092–4099 (2003) ArticleCAS Google Scholar
Lenzi, D., Crum, J., Ellisman, M. H. & Roberts, W. M. Depolarization redistributes synaptic membrane and creates a gradient of vesicles on the synaptic body at a ribbon synapse. Neuron36, 649–659 (2002) ArticleCAS Google Scholar
Holt, M., Cooke, A., Wu, M. M. & Lagnado, L. Bulk membrane retrieval in the synaptic terminal of retinal bipolar cells. J. Neurosci.23, 1329–1339 (2003) ArticleCAS Google Scholar
Hell, S. & Stelzer, E. H. K. Properties of a 4Pi-confocal fluorescence microscope. J. Opt. Soc. Am. A18, 2159–2166 (1992) ArticleADS Google Scholar
Egner, A., Jakobs, S. & Hell, S. W. Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast. Proc. Natl Acad. Sci. USA99, 3370–3375 (2002) ArticleADSCAS Google Scholar
Kemp, D. T. Stimulated acoustic emissions from within the human auditory system. J. Acoust. Soc. Am.64, 1386–1391 (1978) ArticleADSCAS Google Scholar
Starr, A., Picton, T. W., Sininger, Y., Hood, L. J. & Berlin, C. I. Auditory neuropathy. Brain119, 741–753 (1996) Article Google Scholar
Moser, T. & Beutner, D. Kinetics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse. Proc. Natl Acad. Sci. USA97, 883–888 (2000) ArticleADSCAS Google Scholar
Shnerson, A., Devigne, C. & Pujol, R. Age-related changes in the C57BL/6J mouse cochlea. II. Ultrastructural findings. Brain Res.254, 77–88 (1981) ArticleCAS Google Scholar
Neher, E. Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron20, 389–399 (1998) ArticleCAS Google Scholar
Glowatzki, E. & Fuchs, P. A. Transmitter release at the hair cell ribbon synapse. Nature Neurosci.5, 147–154 (2002) ArticleCAS Google Scholar
Trussell, L. O. Synaptic mechanisms for coding timing in auditory neurons. Annu. Rev. Physiol.61, 477–496 (1999) ArticleCAS Google Scholar
Heidelberger, R., Heinemann, C., Neher, E. & Matthews, G. Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature371, 513–515 (1994) ArticleADSCAS Google Scholar
Zenisek, D., Steyer, J. A. & Almers, W. Transport, capture and exocytosis of single synaptic vesicles at active zones. Nature406, 849–854 (2000) ArticleADSCAS Google Scholar
Edmonds, B. W., Gregory, F. D. & Schweizer, F. E. Evidence that fast exocytosis can be predominantly mediated by vesicles not docked at active zones in frog saccular hair cells. J. Physiol. (Lond.)560, 439–450 (2004) ArticleCAS Google Scholar
Spassova, M. A. et al. Evidence that rapid vesicle replenishment of the synaptic ribbon mediates recovery from short-term adaptation at the hair cell afferent synapse. J. Assoc. Res. Otolaryngol.5, 376–390 (2004) Article Google Scholar
von Gersdorff, H., Vardi, E., Matthews, G. & Sterling, P. Evidence that vesicles on the synaptic ribbon of retinal bipolar neurons can be rapidly released. Neuron16, 1221–1227 (1996) ArticleCAS Google Scholar
Smith, J. E. & Reese, T. S. Use of aldehyde fixatives to determine the rate of synaptic transmitter release. J. Exp. Biol.89, 19–29 (1980) CASPubMed Google Scholar
Beutner, D., Voets, T., Neher, E. & Moser, T. Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse. Neuron29, 681–690 (2001) ArticleCAS Google Scholar
Altrock, W. D. et al. Functional inactivation of a fraction of excitatory synapses in mice deficient for the active zone protein bassoon. Neuron37, 787–800 (2003) ArticleCAS Google Scholar