Hair cell synaptic ribbons are essential for synchronous auditory signalling (original) (raw)

References

  1. Fuchs, P. A., Glowatzki, E. & Moser, T. The afferent synapse of cochlear hair cells. Curr. Opin. Neurobiol. 13, 452–458 (2003)
    Article CAS Google Scholar
  2. Smith, C. A. & Sjostrand, F. S. A synaptic structure in the hair cells of the guinea pig cochlea. J. Ultrastruct. Res. 5, 184–192 (1961)
    Article Google Scholar
  3. Liberman, M. C. Single-neuron labeling in the cat auditory nerve. Science 216, 1239–1241 (1982)
    Article ADS CAS Google Scholar
  4. Sterling, P. & Matthews, G. Structure and function of ribbon synapses. Trends Neurosci. 28, 20–29 (2005)
    Article CAS Google Scholar
  5. Lagnado, L. Ribbon synapses. Curr. Biol. 13, R631 (2003)
    Article CAS Google Scholar
  6. Schmitz, F., Konigstorfer, A. & Sudhof, T. C. RIBEYE, a component of synaptic ribbons: a protein's journey through evolution provides insight into synaptic ribbon function. Neuron 28, 857–872 (2000)
    Article CAS Google Scholar
  7. Dick, O. et al. Localization of the presynaptic cytomatrix protein Piccolo at ribbon and conventional synapses in the rat retina: comparison with Bassoon. J. Comp. Neurol. 439, 224–234 (2001)
    Article CAS Google Scholar
  8. tom Dieck, S. et al. Molecular dissection of the photoreceptor ribbon synapse: physical interaction of Bassoon and RIBEYE is essential for the assembly of the ribbon complex. J. Cell Biol. (in the press); published online 22 February 2005 (doi:10.1083/jcb.200408157)
  9. tom Dieck, S. et al. Bassoon, a novel zinc-finger CAG/glutamine-repeat protein selectively localized at the active zone of presynaptic nerve terminals. J. Cell Biol. 142, 499–509 (1998)
    Article CAS Google Scholar
  10. Dick, O. et al. The presynaptic active zone protein bassoon is essential for photoreceptor ribbon synapse formation in the retina. Neuron 37, 775–786 (2003)
    Article CAS Google Scholar
  11. Paillart, C., Li, J., Matthews, G. & Sterling, P. Endocytosis and vesicle recycling at a ribbon synapse. J. Neurosci. 23, 4092–4099 (2003)
    Article CAS Google Scholar
  12. Lenzi, D., Crum, J., Ellisman, M. H. & Roberts, W. M. Depolarization redistributes synaptic membrane and creates a gradient of vesicles on the synaptic body at a ribbon synapse. Neuron 36, 649–659 (2002)
    Article CAS Google Scholar
  13. Holt, M., Cooke, A., Wu, M. M. & Lagnado, L. Bulk membrane retrieval in the synaptic terminal of retinal bipolar cells. J. Neurosci. 23, 1329–1339 (2003)
    Article CAS Google Scholar
  14. Hell, S. & Stelzer, E. H. K. Properties of a 4Pi-confocal fluorescence microscope. J. Opt. Soc. Am. A 18, 2159–2166 (1992)
    Article ADS Google Scholar
  15. Egner, A., Jakobs, S. & Hell, S. W. Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast. Proc. Natl Acad. Sci. USA 99, 3370–3375 (2002)
    Article ADS CAS Google Scholar
  16. Kemp, D. T. Stimulated acoustic emissions from within the human auditory system. J. Acoust. Soc. Am. 64, 1386–1391 (1978)
    Article ADS CAS Google Scholar
  17. Starr, A., Picton, T. W., Sininger, Y., Hood, L. J. & Berlin, C. I. Auditory neuropathy. Brain 119, 741–753 (1996)
    Article Google Scholar
  18. Moser, T. & Beutner, D. Kinetics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse. Proc. Natl Acad. Sci. USA 97, 883–888 (2000)
    Article ADS CAS Google Scholar
  19. Shnerson, A., Devigne, C. & Pujol, R. Age-related changes in the C57BL/6J mouse cochlea. II. Ultrastructural findings. Brain Res. 254, 77–88 (1981)
    Article CAS Google Scholar
  20. Neher, E. Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20, 389–399 (1998)
    Article CAS Google Scholar
  21. Glowatzki, E. & Fuchs, P. A. Transmitter release at the hair cell ribbon synapse. Nature Neurosci. 5, 147–154 (2002)
    Article CAS Google Scholar
  22. Trussell, L. O. Synaptic mechanisms for coding timing in auditory neurons. Annu. Rev. Physiol. 61, 477–496 (1999)
    Article CAS Google Scholar
  23. Heidelberger, R., Heinemann, C., Neher, E. & Matthews, G. Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature 371, 513–515 (1994)
    Article ADS CAS Google Scholar
  24. Zenisek, D., Steyer, J. A. & Almers, W. Transport, capture and exocytosis of single synaptic vesicles at active zones. Nature 406, 849–854 (2000)
    Article ADS CAS Google Scholar
  25. Edmonds, B. W., Gregory, F. D. & Schweizer, F. E. Evidence that fast exocytosis can be predominantly mediated by vesicles not docked at active zones in frog saccular hair cells. J. Physiol. (Lond.) 560, 439–450 (2004)
    Article CAS Google Scholar
  26. Spassova, M. A. et al. Evidence that rapid vesicle replenishment of the synaptic ribbon mediates recovery from short-term adaptation at the hair cell afferent synapse. J. Assoc. Res. Otolaryngol. 5, 376–390 (2004)
    Article Google Scholar
  27. von Gersdorff, H., Vardi, E., Matthews, G. & Sterling, P. Evidence that vesicles on the synaptic ribbon of retinal bipolar neurons can be rapidly released. Neuron 16, 1221–1227 (1996)
    Article CAS Google Scholar
  28. Smith, J. E. & Reese, T. S. Use of aldehyde fixatives to determine the rate of synaptic transmitter release. J. Exp. Biol. 89, 19–29 (1980)
    CAS PubMed Google Scholar
  29. Beutner, D., Voets, T., Neher, E. & Moser, T. Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse. Neuron 29, 681–690 (2001)
    Article CAS Google Scholar
  30. Altrock, W. D. et al. Functional inactivation of a fraction of excitatory synapses in mice deficient for the active zone protein bassoon. Neuron 37, 787–800 (2003)
    Article CAS Google Scholar

Download references