Hypothalamic KATP channels control hepatic glucose production (original) (raw)

References

  1. Friedman, J. M. A war on obesity, not the obese. Science 299, 856–858 (2003)
    Article ADS CAS Google Scholar
  2. Flier, J. S. Obesity wars: molecular progress confronts an expanding epidemic. Cell 116, 337–350 (2004)
    Article CAS Google Scholar
  3. Magnusson, I., Rothman, D. L., Katz, L. D., Shulman, R. G. & Shulman, G. I. Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J. Clin. Invest. 90, 1323–1327 (1992)
    Article CAS Google Scholar
  4. Schwartz, M. W., Woods, S. C., Porte, D. Jr, Seeley, R. J. & Baskin, D. G. Central nervous system control of food intake. Nature 404, 661–671 (2000)
    Article CAS Google Scholar
  5. Obici, S., Zhang, B. B., Karkanias, G. & Rossetti, L. Hypothalamic insulin signaling is required for inhibition of glucose production. Nature Med. 8, 1376–1382 (2002)
    Article CAS Google Scholar
  6. Obici, S., Feng, Z., Arduini, A., Conti, R. & Rossetti, L. Inhibition of hypothalamic carnitine palmitoyltransferase-1 decreases food intake and glucose production. Nature Med. 9, 756–761 (2003)
    Article CAS Google Scholar
  7. Obici, S., Feng, Z., Karkanias, G., Baskin, D. G. & Rossetti, L. Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nature Neurosci. 5, 566–572 (2002)
    Article CAS Google Scholar
  8. Bruning, J. C. et al. Role of brain insulin receptor in control of body weight and reproduction. Science 289, 2122–2125 (2000)
    Article ADS CAS Google Scholar
  9. Woods, S. C., Lotter, E. C., McKay, L. D. & Porte, D. Jr Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 282, 503–505 (1979)
    Article ADS CAS Google Scholar
  10. Niswender, K. D. et al. Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia. Diabetes 52, 227–231 (2003)
    Article CAS Google Scholar
  11. Aguilar-Bryan, L. & Bryan, J. Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr. Rev. 20, 101–135 (1999)
    CAS PubMed Google Scholar
  12. Seghers, V., Nakazaki, M., DeMayo, F., Aguilar-Bryan, L. & Bryan, J. Sur1 knockout mice. A model for KATP channel-independent regulation of insulin secretion. J. Biol. Chem. 275, 9270–9277 (2000)
    Article CAS Google Scholar
  13. Karschin, C., Ecke, C., Ashcroft, F. M. & Karschin, A. Overlapping distribution of KATP channel-forming Kir6.2 subunit and the sulfonylurea receptor SUR1 in rodent brain. FEBS Lett. 401, 59–64 (1997)
    Article CAS Google Scholar
  14. Spanswick, D., Smith, M. A., Groppi, V. E., Logan, S. D. & Ashford, M. L. Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature 390, 521–525 (1997)
    Article ADS CAS Google Scholar
  15. Spanswick, D., Smith, M. A., Mirshamsi, S., Routh, V. H. & Ashford, M. L. Insulin activates ATP-sensitive K+ channels in hypothalamic neurons of lean, but not obese rats. Nature Neurosci. 3, 757–758 (2000)
    Article CAS Google Scholar
  16. Grill, H. J. et al. Evidence that the caudal brainstem is a target for the inhibitory effect of leptin on food intake. Endocrinology 143, 239–246 (2002)
    Article CAS Google Scholar
  17. Aguilar-Bryan, L. et al. Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science 268, 423–426 (1995)
    Article ADS CAS Google Scholar
  18. Seino, S. & Miki, T. Physiological and pathophysiological roles of ATP-sensitive K+ channels. Prog. Biophys. Mol. Biol. 81, 133–176 (2003)
    Article CAS Google Scholar
  19. Seino, S., Iwanaga, T., Nagashima, K. & Miki, T. Diverse roles of KATP channels learned from Kir6.2 genetically engineered mice. Diabetes 49, 311–318 (2000)
    Article CAS Google Scholar
  20. Chutkow, W. A. et al. Disruption of _Sur2_-containing KATP channels enhances insulin-stimulated glucose uptake in skeletal muscle. Proc. Natl Acad. Sci. USA 98, 11760–11764 (2001)
    Article ADS CAS Google Scholar
  21. Matsuhisa, M. et al. Important role of the hepatic vagus nerve in glucose uptake and production by the liver. Metabolism 49, 11–16 (2000)
    Article CAS Google Scholar
  22. Loftus, T. M. et al. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 288, 2379–2381 (2000)
    Article ADS CAS Google Scholar
  23. Minokoshi, Y. et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428, 569–574 (2004)
    Article ADS CAS Google Scholar
  24. Obici, S. et al. Central administration of oleic acid inhibits glucose production and food intake. Diabetes 51, 271–275 (2002)
    Article CAS Google Scholar
  25. Pocai, A., Obici, S., Schwartz, G. J. & Rossetti, L. A brain–liver circuit regulates glucose homeostasis. Cell Metab. 1, 53–61 (2005)
    Article CAS Google Scholar
  26. Morton, G. J. et al. Arcuate nucleus-specific leptin receptor gene therapy attenuates the obesity phenotype of Koletsky (_fa_k/_fa_k) rats. Endocrinology 144, 2016–2024 (2003)
    Article CAS Google Scholar
  27. Massillon, D. et al. Quantitation of hepatic glucose fluxes and pathways of hepatic glycogen synthesis in conscious mice. Am. J. Physiol. 269, E1037–E1043 (1995)
    CAS PubMed Google Scholar
  28. la Fleur, S. E., Ji, H., Manalo, S. L., Friedman, M. I. & Dallman, M. F. The hepatic vagus mediates fat-induced inhibition of diabetic hyperphagia. Diabetes 52, 2321–2330 (2003)
    Article CAS Google Scholar
  29. Norgren, R. & Smith, G. P. Central distribution of subdiaphragmatic vagal branches in the rat. J. Comp. Neurol. 273, 207–223 (1988)
    Article CAS Google Scholar

Download references