Flier, J. S. Obesity wars: molecular progress confronts an expanding epidemic. Cell116, 337–350 (2004) ArticleCAS Google Scholar
Magnusson, I., Rothman, D. L., Katz, L. D., Shulman, R. G. & Shulman, G. I. Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J. Clin. Invest.90, 1323–1327 (1992) ArticleCAS Google Scholar
Schwartz, M. W., Woods, S. C., Porte, D. Jr, Seeley, R. J. & Baskin, D. G. Central nervous system control of food intake. Nature404, 661–671 (2000) ArticleCAS Google Scholar
Obici, S., Zhang, B. B., Karkanias, G. & Rossetti, L. Hypothalamic insulin signaling is required for inhibition of glucose production. Nature Med.8, 1376–1382 (2002) ArticleCAS Google Scholar
Obici, S., Feng, Z., Arduini, A., Conti, R. & Rossetti, L. Inhibition of hypothalamic carnitine palmitoyltransferase-1 decreases food intake and glucose production. Nature Med.9, 756–761 (2003) ArticleCAS Google Scholar
Obici, S., Feng, Z., Karkanias, G., Baskin, D. G. & Rossetti, L. Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nature Neurosci.5, 566–572 (2002) ArticleCAS Google Scholar
Bruning, J. C. et al. Role of brain insulin receptor in control of body weight and reproduction. Science289, 2122–2125 (2000) ArticleADSCAS Google Scholar
Woods, S. C., Lotter, E. C., McKay, L. D. & Porte, D. Jr Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature282, 503–505 (1979) ArticleADSCAS Google Scholar
Niswender, K. D. et al. Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia. Diabetes52, 227–231 (2003) ArticleCAS Google Scholar
Aguilar-Bryan, L. & Bryan, J. Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr. Rev.20, 101–135 (1999) CASPubMed Google Scholar
Seghers, V., Nakazaki, M., DeMayo, F., Aguilar-Bryan, L. & Bryan, J. Sur1 knockout mice. A model for KATP channel-independent regulation of insulin secretion. J. Biol. Chem.275, 9270–9277 (2000) ArticleCAS Google Scholar
Karschin, C., Ecke, C., Ashcroft, F. M. & Karschin, A. Overlapping distribution of KATP channel-forming Kir6.2 subunit and the sulfonylurea receptor SUR1 in rodent brain. FEBS Lett.401, 59–64 (1997) ArticleCAS Google Scholar
Spanswick, D., Smith, M. A., Groppi, V. E., Logan, S. D. & Ashford, M. L. Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature390, 521–525 (1997) ArticleADSCAS Google Scholar
Spanswick, D., Smith, M. A., Mirshamsi, S., Routh, V. H. & Ashford, M. L. Insulin activates ATP-sensitive K+ channels in hypothalamic neurons of lean, but not obese rats. Nature Neurosci.3, 757–758 (2000) ArticleCAS Google Scholar
Grill, H. J. et al. Evidence that the caudal brainstem is a target for the inhibitory effect of leptin on food intake. Endocrinology143, 239–246 (2002) ArticleCAS Google Scholar
Aguilar-Bryan, L. et al. Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science268, 423–426 (1995) ArticleADSCAS Google Scholar
Seino, S. & Miki, T. Physiological and pathophysiological roles of ATP-sensitive K+ channels. Prog. Biophys. Mol. Biol.81, 133–176 (2003) ArticleCAS Google Scholar
Seino, S., Iwanaga, T., Nagashima, K. & Miki, T. Diverse roles of KATP channels learned from Kir6.2 genetically engineered mice. Diabetes49, 311–318 (2000) ArticleCAS Google Scholar
Chutkow, W. A. et al. Disruption of _Sur2_-containing KATP channels enhances insulin-stimulated glucose uptake in skeletal muscle. Proc. Natl Acad. Sci. USA98, 11760–11764 (2001) ArticleADSCAS Google Scholar
Matsuhisa, M. et al. Important role of the hepatic vagus nerve in glucose uptake and production by the liver. Metabolism49, 11–16 (2000) ArticleCAS Google Scholar
Loftus, T. M. et al. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science288, 2379–2381 (2000) ArticleADSCAS Google Scholar
Minokoshi, Y. et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature428, 569–574 (2004) ArticleADSCAS Google Scholar
Obici, S. et al. Central administration of oleic acid inhibits glucose production and food intake. Diabetes51, 271–275 (2002) ArticleCAS Google Scholar
Pocai, A., Obici, S., Schwartz, G. J. & Rossetti, L. A brain–liver circuit regulates glucose homeostasis. Cell Metab.1, 53–61 (2005) ArticleCAS Google Scholar
Morton, G. J. et al. Arcuate nucleus-specific leptin receptor gene therapy attenuates the obesity phenotype of Koletsky (_fa_k/_fa_k) rats. Endocrinology144, 2016–2024 (2003) ArticleCAS Google Scholar
Massillon, D. et al. Quantitation of hepatic glucose fluxes and pathways of hepatic glycogen synthesis in conscious mice. Am. J. Physiol.269, E1037–E1043 (1995) CASPubMed Google Scholar
la Fleur, S. E., Ji, H., Manalo, S. L., Friedman, M. I. & Dallman, M. F. The hepatic vagus mediates fat-induced inhibition of diabetic hyperphagia. Diabetes52, 2321–2330 (2003) ArticleCAS Google Scholar
Norgren, R. & Smith, G. P. Central distribution of subdiaphragmatic vagal branches in the rat. J. Comp. Neurol.273, 207–223 (1988) ArticleCAS Google Scholar