Microstructure of a spatial map in the entorhinal cortex (original) (raw)

References

  1. O'Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Clarendon, Oxford, 1978)
    Google Scholar
  2. McNaughton, B. L. et al. Deciphering the hippocampal polyglot: the hippocampus as a path integration system. J. Exp. Biol. 199, 173–185 (1996)
    CAS PubMed Google Scholar
  3. Taube, J. S. Head direction cells and the neurophysiological basis for a sense of direction. Prog. Neurobiol. 55, 225–256 (1998)
    Article CAS Google Scholar
  4. Redish, A. D. & Touretzky, D. S. Cognitive maps beyond the hippocampus. Hippocampus 7, 15–35 (1997)
    Article CAS Google Scholar
  5. Redish, A. D. Beyond the Cognitive Map: From Place Cells to Episodic Memory (MIT Press, Cambridge, 1999)
    Book Google Scholar
  6. Sharp, P. E. Complimentary roles for hippocampal versus subicular/entorhinal place cells in coding place, context, and events. Hippocampus 9, 432–443 (1999)
    Article CAS Google Scholar
  7. Etienne, A. S. & Jeffery, K. J. Path integration in mammals. Hippocampus 14, 180–192 (2004)
    Article Google Scholar
  8. O'Keefe, J. & Conway, D. H. Hippocampal place units in the freely moving rat: why they fire where they fire. Exp. Brain Res. 31, 573–590 (1978)
    Article CAS Google Scholar
  9. O'Keefe, J. & Burgess, N. Geometric determinants of the place fields of hippocampal neurons. Nature 381, 425–428 (1996)
    Article ADS CAS Google Scholar
  10. Gothard, K. M., Skaggs, W. E. & McNaughton, B. L. Dynamics of mismatch correction in the hippocampal ensemble code for space: interaction between path integration and environmental cues. J. Neurosci. 16, 8027–8040 (1996)
    Article CAS Google Scholar
  11. Sharp, P. E., Blair, H. T., Etkin, D. & Tzanetos, D. B. Influences of vestibular and visual motion information on the spatial firing patterns of hippocampal place cells. J. Neurosci. 15, 173–189 (1995)
    Article CAS Google Scholar
  12. Knierim, J. J., Kudrimoti, H. S. & McNaughton, B. L. Place cells, head direction cells, and the learning of landmark stability. J. Neurosci. 15, 1648–1659 (1995)
    Article CAS Google Scholar
  13. Jeffery, K. J., Donnett, J. G., Burgess, N. & O'Keefe, J. M. Directional control of hippocampal place fields. Exp. Brain Res. 117, 131–142 (1997)
    Article CAS Google Scholar
  14. Nadel, L. The hippocampus and space revisited. Hippocampus 1, 221–229 (1991)
    Article CAS Google Scholar
  15. Samsonovich, A. & McNaughton, B. L. Path integration and cognitive mapping in a continuous attractor neural network model. J. Neurosci. 17, 5900–5920 (1997)
    Article CAS Google Scholar
  16. Muller, R. U. & Kubie, J. L. The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J. Neurosci. 7, 1951–1968 (1987)
    Article CAS Google Scholar
  17. Bostock, E., Muller, R. U. & Kubie, J. L. Experience-dependent modifications of hippocampal place cell firing. Hippocampus 1, 193–205 (1991)
    Article CAS Google Scholar
  18. Leutgeb, S., Leutgeb, J. K., Treves, A., Moser, M.-B. & Moser, E. I. Distinct ensemble codes in hippocampal areas CA3 and CA1. Science 305, 1295–1298 (2004)
    Article ADS CAS Google Scholar
  19. Markus, E. J. et al. Interactions between location and task affect the spatial and directional firing of hippocampal neurons. J. Neurosci. 15, 7079–7094 (1995)
    Article MathSciNet CAS Google Scholar
  20. Frank, L. M., Brown, E. N. & Wilson, M. Trajectory encoding in the hippocampus and entorhinal cortex. Neuron 27, 169–178 (2000)
    Article CAS Google Scholar
  21. Wood, E. R., Dudchenko, P. A., Robitsek, R. J. & Eichenbaum, H. Hippocampal neurons encode information about different types of memory episodes occurring in the same location. Neuron 27, 623–633 (2000)
    Article CAS Google Scholar
  22. Nakazawa, K. et al. Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 297, 211–218 (2002)
    Article ADS CAS Google Scholar
  23. Lee, I., Yoganarasimha, D., Rao, G. & Knierim, J. J. Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3. Nature 430, 456–459 (2004)
    Article ADS CAS Google Scholar
  24. Rolls, E. T. & Treves, A. Neural Networks and Brain Function (Oxford Univ. Press, Oxford, 1998)
    Google Scholar
  25. Squire, L. R., Stark, C. E. & Clark, R. E. The medial temporal lobe. Annu. Rev. Neurosci. 27, 279–306 (2004)
    Article CAS Google Scholar
  26. Fyhn, M., Molden, S., Witter, M. P., Moser, E. I. & Moser, M. B. Spatial representation in the entorhinal cortex. Science 305, 1258–1264 (2004)
    Article ADS CAS Google Scholar
  27. Wilson, M. A. & McNaughton, B. L. Dynamics of the hippocampal ensemble code for space. Science 261, 1055–1058 (1993)
    Article ADS CAS Google Scholar
  28. Mountcastle, V. B. The columnar organization of the neocortex. Brain 120, 701–722 (1997)
    Article Google Scholar
  29. Rockland, K. S. & Ichinohe, N. Some thoughts on cortical minicolumns. Exp. Brain Res. 158, 265–277 (2004)
    Article Google Scholar
  30. Ikeda, J., Mori, K., Oka, S. & Watanabe, Y. A columnar arrangement of dendritic processes of entorhinal cortex neurons revealed by a monoclonal antibody. Brain Res. 505, 176–179 (1989)
    Article CAS Google Scholar
  31. Quirk, G. J., Muller, R. U., Kubie, J. L. & Ranck, J. B. Jr The positional firing properties of medial entorhinal neurons: description and comparison with hippocampal place cells. J. Neurosci 12, 1945–1963 (1992)
    Article CAS Google Scholar
  32. Taube, J. S., Muller, R. U. & Ranck, J. B. Jr Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. J. Neurosci. 10, 436–447 (1990)
    Article CAS Google Scholar
  33. Goodridge, J. P. & Taube, J. S. Preferential use of the landmark navigational system by head direction cells in rats. Behav. Neurosci. 109, 49–61 (1995)
    Article CAS Google Scholar
  34. Mittelstaedt, M. L. & Mittelstaedt, H. Homing by path integration in a mammal. Naturwissenschaften 67, 566–567 (1980)
    Article ADS Google Scholar
  35. Gallistel, C. R. The Organization of Learning (MIT Press, Cambridge Massachusetts, 1990)
    Google Scholar
  36. Biegler, R. Possible uses of path integration in animal navigation. Anim. Learn. Behav. 28, 257–277 (2000)
    Article Google Scholar
  37. van Haeften, T., Wouterlood, F. G., Jorritsma-Byham, B. & Witter, M. P. GABAergic presubicular projections to the medial entorhinal cortex of the rat. J. Neurosci. 17, 862–874 (1997)
    Article CAS Google Scholar
  38. Witter, M. P., Groenewegen, H. J., Lopes da Silva, F. H. & Lohman, A. H. Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog. Neurobiol. 33, 161–253 (1989)
    Article CAS Google Scholar
  39. Witter, M. P. & Amaral, D. G. in The Rat Nervous System 3rd edn (ed. Paxinos, G.) 637–703 (Academic, San Diego, 2004)
    Google Scholar
  40. Parron, C. & Save, E. Evidence for entorhinal and parietal cortices involvement in path integration in the rat. Exp. Brain Res. 159, 349–359 (2004)
    Article Google Scholar
  41. Steffenach, H.-A., Witter, M. P., Moser, M.-B. & Moser, E. I. Spatial memory in the rat requires the dorsolateral band of the entorhinal cortex. Neuron 45, 301–313 (2005)
    Article CAS Google Scholar
  42. Skaggs, W. E., Knierim, J. J., Kudrimoto, H. & McNaughton, B. L. in Advances in Neural Information Processing Systems (eds Tesauro, G., Touretzky, D. S. & Leen, T. K.) Vol. 7, 173–180 (MIT Press, Cambridge, Massachusetts, 1995)
    Google Scholar
  43. Lingenhohl, K. & Finch, D. M. Morphological characterization of rat entorhinal neurons in vivo: soma-dendritic structure and axonal domains. Exp. Brain Res. 84, 57–74 (1991)
    Article CAS Google Scholar
  44. Germroth, P., Schwerdtfeger, W. K. & Buhl, E. H. Ultrastructure and aspects of functional organization of pyramidal and nonpyramidal entorhinal projection neurons contributing to the perforant path. J. Comp. Neurol. 305, 215–231 (1991)
    Article CAS Google Scholar
  45. Dhillon, A. & Jones, R. S. Laminar differences in recurrent excitatory transmission in the rat entorhinal cortex in vitro. Neuroscience 99, 413–422 (2000)
    Article CAS Google Scholar
  46. Egorov, A. V., Hamam, B. N., Fransen, E., Hasselmo, M. E. & Alonso, A. A. Graded persistent activity in entorhinal cortex neurons. Nature 420, 173–178 (2002)
    Article ADS CAS Google Scholar
  47. Iijima, T. et al. Entorhinal-hippocampal interactions revealed by real-time imaging. Science 272, 1176–1179 (1996)
    Article ADS CAS Google Scholar
  48. Lorincz, A. & Buzsaki, G. Two-phase computational model training long-term memories in the entorhinal-hippocampal region. Ann. NY Acad. Sci. 911, 83–111 (2000)
    Article ADS CAS Google Scholar
  49. Fyhn, M., Molden, S., Hollup, S., Moser, M.-B. & Moser, E. I. Hippocampal neurons responding to first-time dislocation of a target object. Neuron 35, 555–566 (2002)
    Article CAS Google Scholar
  50. Sargolini, F., Molden, S., Witter, M. P., Moser, E. I. & Moser, M.-B. Place representation in the deep layers of entorhinal cortex. Soc. Neurosci. Abstr. 30, 330.9 (2004)
    Google Scholar

Download references